Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The study develops a novel stochastic frontier modeling approach to the gravity equation for rare earth element (REE) trade between China and its trading partners between 2001 and 2009. The novelty lies in differentiating betweenbehind the border' trade costs by China and theimplicit beyond the border costs' of China's trading partners. Results indicate that the significance level of the independent variables change dramatically over the time period. While geographical distance matters for trade flows in both periods, the effect of income on trade flows is significantly attenuated, possibly capturing the negative effects of financial crises in the developed world. Second, the total export losses due tobehind the border' trade costs almost tripled over the time period. Finally, looking atimplicit beyond the border' trade costs, results show China gaining in some markets, although it is likely that some countries are substituting away from Chinese REE exports.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Materials Research Society Symposium Proceedings
Deep boreholes have been proposed for many decades as an option for permanent disposal of high-level radioactive waste and spent nuclear fuel. Disposal concepts are straightforward, and generally call for drilling boreholes to a depth of four to five kilometers (or more) into crystalline basement rocks. Waste is placed in the lower portion of the hole, and the upper several kilometers of the hole are sealed to provide effective isolation from the biosphere. The potential for excellent long-term performance has been recognized in many previous studies. This paper reports updated results of what is believed to be the first quantitative analysis of releases from a hypothetical disposal borehole repository using the same performance assessment methodology applied to mined geologic repositories for high-level radioactive waste. Analyses begin with a preliminary consideration of a comprehensive list of potentially relevant features, events, and processes (FEPs) and the identification of those FEPs that appear to be most likely to affect long-term performance in deep boreholes. The release pathway selected for preliminary performance assessment modeling is thermally-driven flow and radionuclide transport upwards from the emplacement zone through the borehole seals or the surrounding annulus of disturbed rock. Estimated radionuclide releases from deep borehole disposal of spent nuclear fuel, and the annual radiation doses to hypothetical future humans associated with those releases, are extremely small, indicating that deep boreholes may be a viable alternative to mined repositories for disposal of both high-level radioactive waste and spent nuclear fuel. © 2012 Materials Research Society.
Abstract not provided.