Publications

Results 26–47 of 47

Search results

Jump to search filters

Model reduction for steady hypersonic aerodynamics via conservative manifold least-squares petrov–galerkin projection

AIAA Journal

Blonigan, Patrick J.; Rizzi, Francesco N.; Howard, Micah A.; Fike, Jeffrey A.; Carlberg, Kevin T.

High-speed aerospace engineering applications rely heavily on computational fluid dynamics (CFD) models for design and analysis. This reliance on CFD models necessitates performing accurate and reliable uncertainty quantification (UQ) of the CFD models, which can be very expensive for hypersonic flows. Additionally, UQ approaches are many-query problems requiring many runs with a wide range of input parameters. One way to enable computationally expensive models to be used in such many-query problems is to employ projection-based reduced-order models (ROMs) in lieu of the (high-fidelity) full-order model (FOM). In particular, the least-squares Petrov–Galerkin (LSPG) ROM (equipped with hyper-reduction) has demonstrated the ability to significantly reduce simulation costs while retaining high levels of accuracy on a range of problems, including subsonic CFD applications. This allows LSPG ROM simulations to replace the FOM simulations in UQ studies, making UQ tractable even for large-scale CFD models. This work presents the first application of LSPG to a hypersonic CFD application, the Hypersonic International Flight Research Experimentation 1 (HIFiRE-1) in a three-dimensional, turbulent Mach 7.1 flow. This paper shows the ability of the ROM to significantly reduce computational costs while maintaining high levels of accuracy in computed quantities of interest.

More Details

Projection-based model reduction for finite-element simulations of thermal protection systems

AIAA Scitech 2021 Forum

Arienti, Marco A.; Blonigan, Patrick J.; Rizzi, Francesco N.; Tencer, John T.; Howard, Micah A.

Thermal protection system designers rely heavily on computational simulation tools for design optimization and uncertainty quantification. Because high-fidelity analysis tools are computationally expensive, analysts primarily use low-fidelity or surrogate models instead. In this work, we explore an alternative approach wherein projection-based reduced-order models (ROMs) are used to approximate the computationally infeasible high-fidelity model. ROMs are preferable to alternative approximation approaches for high-consequence applications due to the presence of rigorous error bounds. This work presents the first application of ROMs to ablation systems. In particular, we present results for Galerkin and least-squares Petrov-Galerkin ROMs of 1D and 2D ablation system models.

More Details

Model reduction for hypersonic aerodynamics via conservative lspg projection and hyper-reduction

AIAA Scitech 2020 Forum

Blonigan, Patrick J.; Rizzi, Francesco N.; Howard, Micah A.; Fike, Jeffrey A.; Carlberg, Kevin T.

High-speed aerospace engineering applications rely heavily on computational fluid dynamics (CFD) models for design and analysis due to the expense and difficulty of flight tests and experiments. This reliance on CFD models necessitates performing accurate and reliable uncertainty quantification (UQ) of the CFD models. However, it is very computationally expensive to run CFD for hypersonic flows due to the fine grid resolution required to capture the strong shocks and large gradients that are typically present. Additionally, UQ approaches are “many-query” problems requiring many runs with a wide range of input parameters. One way to enable computationally expensive models to be used in such many-query problems is to employ projection-based reduced-order models (ROMs) in lieu of the (high-fidelity) full-order model. In particular, the least-squares Petrov–Galerkin (LSPG) ROM (equipped with hyper-reduction) has demonstrated the ability to significantly reduce simulation costs while retaining high levels of accuracy on a range of problems including subsonic CFD applications [1, 2]. This allows computationally inexpensive LSPG ROM simulations to replace the full-order model simulations in UQ studies, which makes this many-query task tractable, even for large-scale CFD models. This work presents the first application of LSPG to a hypersonic CFD application. In particular, we present results for LSPG ROMs of the HIFiRE-1 in a three-dimensional, turbulent Mach 7.1 flow, showcasing the ability of the ROM to significantly reduce computational costs while maintaining high levels of accuracy in computed quantities of interest.

More Details

Towards an integrated and efficient framework for leveraging reduced order models for multifidelity uncertainty quantification

AIAA Scitech 2020 Forum

Blonigan, Patrick J.; Geraci, Gianluca G.; Rizzi, Francesco N.; Eldred, Michael S.

Truly predictive numerical simulations can only be obtained by performing Uncertainty Quantification. However, many realistic engineering applications require extremely complex and computationally expensive high-fidelity numerical simulations for their accurate performance characterization. Very often the combination of complex physical models and extreme operative conditions can easily lead to hundreds of uncertain parameters that need to be propagated through high-fidelity codes. Under these circumstances, a single fidelity uncertainty quantification approach, i.e. a workflow that only uses high-fidelity simulations, is unfeasible due to its prohibitive overall computational cost. To overcome this difficulty, in recent years multifidelity strategies emerged and gained popularity. Their core idea is to combine simulations with varying levels of fidelity/accuracy in order to obtain estimators or surrogates that can yield the same accuracy of their single fidelity counterparts at a much lower computational cost. This goal is usually accomplished by defining a priori a sequence of discretization levels or physical modeling assumptions that can be used to decrease the complexity of a numerical model realization and thus its computational cost. Less attention has been dedicated to low-fidelity models that can be built directly from a small number of available high-fidelity simulations. In this work we focus our attention on reduced order models (ROMs). Our main goal in this work is to investigate the combination of multifidelity uncertainty quantification and ROMs in order to evaluate the possibility to obtain an efficient framework for propagating uncertainties through expensive numerical codes. We focus our attention on sampling-based multifidelity approaches, like the multifidelity control variate, and we consider several scenarios for a numerical test problem, namely the Kuramoto-Sivashinsky equation, for which the efficiency of the multifidelity-ROM estimator is compared to the standard (single-fidelity) Monte Carlo approach.

More Details

Towards an integrated and efficient framework for leveraging reduced order models for multifidelity uncertainty quantification

AIAA Scitech 2020 Forum

Blonigan, Patrick J.; Geraci, Gianluca G.; Rizzi, Francesco N.; Eldred, Michael S.

Truly predictive numerical simulations can only be obtained by performing Uncertainty Quantification. However, many realistic engineering applications require extremely complex and computationally expensive high-fidelity numerical simulations for their accurate performance characterization. Very often the combination of complex physical models and extreme operative conditions can easily lead to hundreds of uncertain parameters that need to be propagated through high-fidelity codes. Under these circumstances, a single fidelity uncertainty quantification approach, i.e. a workflow that only uses high-fidelity simulations, is unfeasible due to its prohibitive overall computational cost. To overcome this difficulty, in recent years multifidelity strategies emerged and gained popularity. Their core idea is to combine simulations with varying levels of fidelity/accuracy in order to obtain estimators or surrogates that can yield the same accuracy of their single fidelity counterparts at a much lower computational cost. This goal is usually accomplished by defining a priori a sequence of discretization levels or physical modeling assumptions that can be used to decrease the complexity of a numerical model realization and thus its computational cost. Less attention has been dedicated to low-fidelity models that can be built directly from a small number of available high-fidelity simulations. In this work we focus our attention on reduced order models (ROMs). Our main goal in this work is to investigate the combination of multifidelity uncertainty quantification and ROMs in order to evaluate the possibility to obtain an efficient framework for propagating uncertainties through expensive numerical codes. We focus our attention on sampling-based multifidelity approaches, like the multifidelity control variate, and we consider several scenarios for a numerical test problem, namely the Kuramoto-Sivashinsky equation, for which the efficiency of the multifidelity-ROM estimator is compared to the standard (single-fidelity) Monte Carlo approach.

More Details

On-line Generation and Error Handling for Surrogate Models within Multifidelity Uncertainty Quantification

Blonigan, Patrick J.; Geraci, Gianluca G.; Rizzi, Francesco N.; Eldred, Michael S.; Carlberg, Kevin

Uncertainty quantification is recognized as a fundamental task to obtain predictive numerical simulations. However, many realistic engineering applications require complex and computationally expensive high-fidelity numerical simulations for the accurate characterization of the system responses. Moreover, complex physical models and extreme operative conditions can easily lead to hundreds of uncertain parameters that need to be propagated through high-fidelity codes. Under these circumstances, a single fidelity approach, i.e. a workflow that only uses high-fidelity simulations to perform the uncertainty quantification task, is unfeasible due to the prohibitive overall computational cost. In recent years, multifidelity strategies have been introduced to overcome this issue. The core idea of this family of methods is to combine simulations with varying levels of fidelity/accuracy in order to obtain the multifidelity estimators or surrogates with the same accuracy of their single fidelity counterparts at a much lower computational cost. This goal is usually accomplished by defining a prioria sequence of discretization levels or physical modeling assumptions that can be used to decrease the complexity of a numerical realization and thus its computational cost. However ,less attention has been dedicated to low-fidelity models that can be built directly from the small number of high-fidelity simulations available. In this work we focus our attention on Reduced-Order Models that can be considered a particular class of data-driven approaches. Our main goal is to explore the combination of multifidelity uncertainty quantification and reduced-order models to obtain an efficient framework for propagating uncertainties through expensive numerical codes.

More Details
Results 26–47 of 47
Results 26–47 of 47