Publications

Results 26–50 of 51

Search results

Jump to search filters

Crossing the Cleft: Communication Challenges Between Neuroscience and Artificial Intelligence

Frontiers in Computational Neuroscience

Chance, Frances S.; Aimone, James B.; Musuvathy, Srideep M.; Smith, Michael R.; Vineyard, Craig M.; Wang, Felix W.

Historically, neuroscience principles have heavily influenced artificial intelligence (AI), for example the influence of the perceptron model, essentially a simple model of a biological neuron, on artificial neural networks. More recently, notable recent AI advances, for example the growing popularity of reinforcement learning, often appear more aligned with cognitive neuroscience or psychology, focusing on function at a relatively abstract level. At the same time, neuroscience stands poised to enter a new era of large-scale high-resolution data and appears more focused on underlying neural mechanisms or architectures that can, at times, seem rather removed from functional descriptions. While this might seem to foretell a new generation of AI approaches arising from a deeper exploration of neuroscience specifically for AI, the most direct path for achieving this is unclear. Here we discuss cultural differences between the two fields, including divergent priorities that should be considered when leveraging modern-day neuroscience for AI. For example, the two fields feed two very different applications that at times require potentially conflicting perspectives. We highlight small but significant cultural shifts that we feel would greatly facilitate increased synergy between the two fields.

More Details

Self-updating models with error remediation

Proceedings of SPIE - The International Society for Optical Engineering

Doak, Justin E.; Smith, Michael R.; Ingram, Joey

Many environments currently employ machine learning models for data processing and analytics that were built using a limited number of training data points. Once deployed, the models are exposed to significant amounts of previously-unseen data, not all of which is representative of the original, limited training data. However, updating these deployed models can be difficult due to logistical, bandwidth, time, hardware, and/or data sensitivity constraints. We propose a framework, Self-Updating Models with Error Remediation (SUMER), in which a deployed model updates itself as new data becomes available. SUMER uses techniques from semi-supervised learning and noise remediation to iteratively retrain a deployed model using intelligently-chosen predictions from the model as the labels for new training iterations. A key component of SUMER is the notion of error remediation as self-labeled data can be susceptible to the propagation of errors. We investigate the use of SUMER across various data sets and iterations. We find that self-updating models (SUMs) generally perform better than models that do not attempt to self-update when presented with additional previously-unseen data. This performance gap is accentuated in cases where there is only limited amounts of initial training data. We also find that the performance of SUMER is generally better than the performance of SUMs, demonstrating a benefit in applying error remediation. Consequently, SUMER can autonomously enhance the operational capabilities of existing data processing systems by intelligently updating models in dynamic environments.

More Details

Dynamic Analysis of Executables to Detect and Characterize Malware

Proceedings - 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018

Smith, Michael R.; Ingram, Joey; Lamb, Christopher L.; Draelos, Timothy J.; Doak, Justin E.; Aimone, James B.; James, Conrad D.

Malware detection and remediation is an on-going task for computer security and IT professionals. Here, we examine the use of neural algorithms to detect malware using the system calls generated by executables-alleviating attempts at obfuscation as the behavior is monitored. We examine several deep learning techniques, and liquid state machines baselined against a random forest. The experiments examine the effects of concept drift to understand how well the algorithms generalize to novel malware samples by testing them on data that was collected after the training data. The results suggest that each of the examined machine learning algorithms is a viable solution to detect malware-achieving between 90% and 95% class-averaged accuracy (CAA). In real-world scenarios, the performance evaluation on an operational network may not match the performance achieved in training. Namely, the CAA may be about the same, but the values for precision and recall over the malware can change significantly. We structure experiments to highlight these caveats and offer insights into expected performance in operational environments. In addition, we use the induced models to better understand what differentiates malware samples from goodware, which can further be used as a forensics tool to provide directions for investigation and remediation.

More Details

A spike-Timing neuromorphic architecture

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Hill, Aaron J.; Donaldson, Jonathon W.; Rothganger, Fredrick R.; Vineyard, Craig M.; Follett, David R.; Follett, Pamela L.; Smith, Michael R.; Verzi, Stephen J.; Severa, William M.; Wang, Felix W.; Aimone, James B.; Naegle, John H.; James, Conrad D.

Unlike general purpose computer architectures that are comprised of complex processor cores and sequential computation, the brain is innately parallel and contains highly complex connections between computational units (neurons). Key to the architecture of the brain is a functionality enabled by the combined effect of spiking communication and sparse connectivity with unique variable efficacies and temporal latencies. Utilizing these neuroscience principles, we have developed the Spiking Temporal Processing Unit (STPU) architecture which is well-suited for areas such as pattern recognition and natural language processing. In this paper, we formally describe the STPU, implement the STPU on a field programmable gate array, and show measured performance data.

More Details
Results 26–50 of 51
Results 26–50 of 51