Including anharmonicity in adsorbate partition functions: Effect on equilibrium constant estimates in heterogeneous catalysis
Abstract not provided.
Abstract not provided.
The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.1 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computational Mechanics
We demonstrate a Bayesian method for the “real-time” characterization and forecasting of partially observed COVID-19 epidemic. Characterization is the estimation of infection spread parameters using daily counts of symptomatic patients. The method is designed to help guide medical resource allocation in the early epoch of the outbreak. The estimation problem is posed as one of Bayesian inference and solved using a Markov chain Monte Carlo technique. The data used in this study was sourced before the arrival of the second wave of infection in July 2020. The proposed modeling approach, when applied at the country level, generally provides accurate forecasts at the regional, state and country level. The epidemiological model detected the flattening of the curve in California, after public health measures were instituted. The method also detected different disease dynamics when applied to specific regions of New Mexico.
Abstract not provided.
Abstract not provided.
Water Resources Research
A novel modeling framework that simultaneously improves accuracy, predictability, and computational efficiency is presented. It embraces the benefits of three modeling techniques integrated together for the first time: surrogate modeling, parameter inference, and data assimilation. The use of polynomial chaos expansion (PCE) surrogates significantly decreases computational time. Parameter inference allows for model faster convergence, reduced uncertainty, and superior accuracy of simulated results. Ensemble Kalman filters assimilate errors that occur during forecasting. To examine the applicability and effectiveness of the integrated framework, we developed 18 approaches according to how surrogate models are constructed, what type of parameter distributions are used as model inputs, and whether model parameters are updated during the data assimilation procedure. We conclude that (1) PCE must be built over various forcing and flow conditions, and in contrast to previous studies, it does not need to be rebuilt at each time step; (2) model parameter specification that relies on constrained, posterior information of parameters (so-called Selected specification) can significantly improve forecasting performance and reduce uncertainty bounds compared to Random specification using prior information of parameters; and (3) no substantial differences in results exist between single and dual ensemble Kalman filters, but the latter better simulates flood peaks. The use of PCE effectively compensates for the computational load added by the parameter inference and data assimilation (up to ~80 times faster). Therefore, the presented approach contributes to a shift in modeling paradigm arguing that complex, high-fidelity hydrologic and hydraulic models should be increasingly adopted for real-time and ensemble flood forecasting.
The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.1.0 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.
Abstract not provided.
arXiv.org Repository
Model error estimation remains one of the key challenges in uncertainty quantification and predictive science. For computational models of complex physical systems, model error, also known as structural error or model inadequacy, is often the largest contributor to the overall predictive uncertainty. This work builds on a recently developed framework of embedded, internal model correction, in order to represent and quantify structural errors, together with model parameters,within a Bayesian inference context. We focus specifically on a Polynomial Chaos representation with additive modification of existing model parameters, enabling a non-intrusive procedure for efficient approximate likelihood construction, model error estimation, and disambiguation of model and data errors’ contributions to predictive uncertainty. The framework is demonstrated on several synthetic examples, as well as on a chemical ignition problem.
Abstract not provided.
Abstract not provided.
International Journal for Uncertainty Quantification
Model error estimation remains one of the key challenges in uncertainty quantification and predictive science. For computational models of complex physical systems, model error, also known as structural error or model inadequacy, is often the largest contributor to the overall predictive uncertainty. This work builds on a recently developed frame- work of embedded, internal model correction, in order to represent and quantify structural errors, together with model parameters, within a Bayesian inference context.We focus specifically on a polynomial chaos representation with addi- tive modification of existing model parameters, enabling a nonintrusive procedure for efficient approximate likelihood construction, model error estimation, and disambiguation of model and data errors’ contributions to predictive uncer- tainty. The framework is demonstrated on several synthetic examples, as well as on a chemical ignition problem.
Rate coefficients are key quantities in gas phase kinetics and can be determined theoretically via master equation (ME) calculations. Rate coefficients characterize how fast a certain chemical species reacts away due to collisions into a specific product. Some of these collisions are simply transferring energy between the colliding partners, in which case the initial chemical species can undergo a unimolecular reaction: dissociation or isomerization. Other collisions are reactive, and the colliding partners either exchange atoms, these are direct reactions, or form complexes that can themselves react further or get stabilized by deactivating collisions with a bath gas. The input of MEs are molecular parameters: geometries, energies, and frequencies determined from ab initio calculations. While the calculation of these rate coefficients using ab initio data is becoming routine in many cases, the determination of the uncertainties of the rate coefficients are often ignored, sometimes crudely assessed by varying independently just a few of the numerous parameters, and only occasionally studied in detail. In this study, molecular frequencies, barrier heights, well depths, and imaginary frequencies (needed to calculate quantum mechanical tunneling) were automatically perturbed in an uncorrelated fashion. Our Python tool, MEUQ, takes user requests to change all or specified well, barrier, or bimolecular product parameters for a reaction. We propagate the uncertainty in these input parameters and perform global sensitivity analysis in the rate coefficients for the ethyl + O2 system using state-of-the-art uncertainty quantification (UQ) techniques via Python interface to UQ Toolkit (www.sandia.gov/uqtoolkit). A total of 10,000 sets of rate coefficients were collected after perturbing 240 molecular parameters. With our methodology, sensitive mechanistic steps can be revealed to a modeler in a straightforward manner for identification of significant and negligible influences in bimolecular reactions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM/ASA Journal on Uncertainty Quantification
Here, compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quantification analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several compressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers l1_ls, SpaRSA, CGIST, FPC_AS, and ADMM, we develop techniques to mitigate overfitting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendations on parameter settings for these techniques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-crossflow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy, and computational trade-offs between polynomial bases of different degrees, and practicability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function as a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.
Journal of Advances in Modeling Earth Systems
We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. About 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). The relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.
Abstract not provided.
Abstract not provided.
SIAM-ASA Journal on Uncertainty Quantification
Compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quantification analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several compressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers l1_ls, SpaRSA, CGIST, FPC_AS, and ADMM, we develop techniques to mitigate overfitting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendations on parameter settings for these techniques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-crossflow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy, and computational trade-offs between polynomial bases of different degrees, and practicability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.
AIAA Non-Deterministic Approaches Conference, 2018
The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress towards optimal engine designs requires accurate and computationally affordable flow simulations, as well as uncertainty quantification (UQ). While traditional UQ techniques can become prohibitive under expensive simulations and high-dimensional parameter spaces, polynomial chaos (PC) surrogate modeling is a useful tool for alleviating some of the computational burden. However, non-intrusive quadrature-based constructions of PC expansions relying on a single high-fidelity model can still be quite expensive. We thus introduce a two-stage numerical procedure for constructing PC surrogates while making use of multiple models of different fidelity. The first stage involves an initial dimension reduction through global sensitivity analysis using compressive sensing. The second stage utilizes adaptive sparse quadrature on a multifidelity expansion to compute PC surrogate coefficients in the reduced parameter space where quadrature methods can be more effective. The overall method is used to produce accurate surrogates and to propagate uncertainty induced by uncertain boundary conditions and turbulence model parameters, for performance quantities of interest from large eddy simulations of supersonic reactive flows inside a scramjet engine.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Data movement is considered the main performance concern for exascale, including both on-node memory and off-node network communication. Indeed, many application traces show significant time spent in MPI calls, potentially indicating that faster networks must be provisioned for scalability. However, equating MPI times with network communication delays ignores synchronization delays and software overheads independent of network hardware. Using point-to-point protocol details, we explore the decomposition of MPI time into communication, synchronization and software stack components using architecture simulation. Detailed validation using Bayesian inference is used to identify the sensitivity of performance to specific latency/bandwidth parameters for different network protocols and to quantify associated uncertainties. The inference combined with trace replay shows that synchronization and MPI software stack overhead are at least as important as the network itself in determining time spent in communication routines.
AIAA Journal
The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertainparameters involvedandthe high computational costofflow simulations. These difficulties are addressedin this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying themin the current studyto large-eddy simulations ofajet incrossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system's stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.
AIAA Journal
The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertainparameters involvedandthe high computational costofflow simulations. These difficulties are addressedin this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying themin the current studyto large-eddy simulations ofajet incrossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system's stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.
Abstract not provided.