Publications

Results 1–25 of 41

Search results

Jump to search filters

Discovering the Unknowns: A First Step

SIAM-ASA Journal on Uncertainty Quantification

Joseph, V.R.; Laros, James H.; Yuchi, Henry S.; Maupin, Kathryn A.

This article aims at discovering the unknown variables in the system through data analysis. The main idea is to use the time of data collection as a surrogate variable and try to identify the unknown variables by modeling gradual and sudden changes in the data. We use Gaussian process modeling and a sparse representation of the sudden changes to efficiently estimate the large number of parameters in the proposed statistical model. The method is tested on a realistic dataset generated using a one-dimensional implementation of a Magnetized Liner Inertial Fusion (MagLIF) simulation model, and encouraging results are obtained.

More Details

Developing and applying quantifiable metrics for diagnostic and experiment design on Z

Laros, James H.; Knapp, Patrick F.; Beckwith, Kristian B.; Evstatiev, Evstati G.; Fein, Jeffrey R.; Jennings, Christopher A.; Joseph, Roshan; Klein, Brandon T.; Maupin, Kathryn A.; Nagayama, Taisuke N.; Patel, Ravi G.; Schaeuble, Marc-Andre S.; Vasey, Gina; Ampleford, David A.

This project applies methods in Bayesian inference and modern statistical methods to quantify the value of new experimental data, in the form of new or modified diagnostic configurations and/or experiment designs. We demonstrate experiment design methods that can be used to identify the highest priority diagnostic improvements or experimental data to obtain in order to reduce uncertainties on critical inferred experimental quantities and select the best course of action to distinguish between competing physical models. Bayesian statistics and information theory provide the foundation for developing the necessary metrics, using two high impact experimental platforms on Z as exemplars to develop and illustrate the technique. We emphasize that the general methodology is extensible to new diagnostics (provided synthetic models are available), as well as additional platforms. We also discuss initial scoping of additional applications that began development in the last year of this LDRD.

More Details

Mallat Scattering Transformation based surrogate for Magnetohydrodynamics

Computational Mechanics

Glinsky, Michael E.; Maupin, Kathryn A.

A Machine and Deep Learning (MLDL) methodology is developed and applied to give a high fidelity, fast surrogate for 2D resistive MagnetoHydroDynamic (MHD) simulations of Magnetic Liner Inertial Fusion (MagLIF) implosions. The resistive MHD code GORGON is used to generate an ensemble of implosions with different liner aspect ratios, initial gas preheat temperatures (that is, different adiabats), and different liner perturbations. The liner density and magnetic field as functions of x, y, and z were generated. The Mallat Scattering Transformation (MST) is taken of the logarithm of both fields and a Principal Components Analysis (PCA) is done on the logarithm of the MST of both fields. The fields are projected onto the PCA vectors and a small number of these PCA vector components are kept. Singular Value Decompositions of the cross correlation of the input parameters to the output logarithm of the MST of the fields, and of the cross correlation of the SVD vector components to the PCA vector components are done. This allows the identification of the PCA vectors vis-a-vis the input parameters. Finally, a Multi Layer Perceptron (MLP) neural network with ReLU activation and a simple three layer encoder/decoder architecture is trained on this dataset to predict the PCA vector components of the fields as a function of time. Details of the implosion, stagnation, and the disassembly are well captured. Examination of the PCA vectors and a permutation importance analysis of the MLP show definitive evidence of an inverse turbulent cascade into a dipole emergent behavior. The orientation of the dipole is set by the initial liner perturbation. The analysis is repeated with a version of the MST which includes phase, called Wavelet Phase Harmonics (WPH). While WPH do not give the physical insight of the MST, they can and are inverted to give field configurations as a function of time, including field-to-field correlations.

More Details

An Assessment of the Laminar Hypersonic Double-Cone Experiments in the LENS-XX Tunnel

AIAA Journal

Blonigan, Patrick J.; Phipps, Eric T.; Maupin, Kathryn A.

This is an investigation on two experimental datasets of laminar hypersonic flows, over a double-cone geometry, acquired in Calspan—University at Buffalo Research Center’s Large Energy National Shock (LENS)-XX expansion tunnel. These datasets have yet to be modeled accurately. A previous paper suggested that this could partly be due to mis-specified inlet conditions. The authors of this paper solved a Bayesian inverse problem to infer the inlet conditions of the LENS-XX test section and found that in one case they lay outside the uncertainty bounds specified in the experimental dataset. However, the inference was performed using approximate surrogate models. Here in this paper, the experimental datasets are revisited and inversions for the tunnel test-section inlet conditions are performed with a Navier–Stokes simulator. The inversion is deterministic and can provide uncertainty bounds on the inlet conditions under a Gaussian assumption. It was found that deterministic inversion yields inlet conditions that do not agree with what was stated in the experiments. An a posteriori method is also presented to check the validity of the Gaussian assumption for the posterior distribution. This paper contributes to ongoing work on the assessment of datasets from challenging experiments conducted in extreme environments, where the experimental apparatus is pushed to the margins of its design and performance envelopes.

More Details

Monotonic Gaussian Process for Physics-Constrained Machine Learning With Materials Science Applications

Journal of Computing and Information Science in Engineering

Laros, James H.; Maupin, Kathryn A.; Rodgers, Theron R.

Physics-constrained machine learning is emerging as an important topic in the field of machine learning for physics. One of the most significant advantages of incorporating physics constraints into machine learning methods is that the resulting model requires significantly less data to train. By incorporating physical rules into the machine learning formulation itself, the predictions are expected to be physically plausible. Gaussian process (GP) is perhaps one of the most common methods in machine learning for small datasets. In this paper, we investigate the possibility of constraining a GP formulation with monotonicity on three different material datasets, where one experimental and two computational datasets are used. The monotonic GP is compared against the regular GP, where a significant reduction in the posterior variance is observed. The monotonic GP is strictly monotonic in the interpolation regime, but in the extrapolation regime, the monotonic effect starts fading away as one goes beyond the training dataset. Imposing monotonicity on the GP comes at a small accuracy cost, compared to the regular GP. The monotonic GP is perhaps most useful in applications where data are scarce and noisy, and monotonicity is supported by strong physical evidence.

More Details

PHYSICS-INFORMED MULTI-OUTPUT SURROGATE MODELING OF FUSION SIMULATIONS

Proceedings of the ASME Design Engineering Technical Conference

Maupin, Kathryn A.; Laros, James H.; Laros, James H.; Glinsky, Michael E.

Computational simulation allows scientists to explore, observe, and test physical regimes thought to be unattainable. Validation and uncertainty quantification play crucial roles in extrapolating the use of physics-based models. Bayesian analysis provides a natural framework for incorporating the uncertainties that undeniably exist in computational modeling. However, the ability to perform quality Bayesian and uncertainty analyses is often limited by the computational expense of first-principles physics models. In the absence of a reliable low-fidelity physics model, phenomenological surrogate or machine learned models can be used to mitigate this expense; however, these data-driven models may not adhere to known physics or properties. Furthermore, the interactions of complex physics in high-fidelity codes lead to dependencies between quantities of interest (QoIs) that are difficult to quantify and capture when individual surrogates are used for each observable. Although this is not always problematic, predicting multiple QoIs with a single surrogate preserves valuable insights regarding the correlated behavior of the target observables and maximizes the information gained from available data. A method of constructing a Gaussian Process (GP) that emulates multiple QoIs simultaneously is presented. As an exemplar, we consider Magnetized Liner Inertial Fusion, a fusion concept that relies on the direct compression of magnetized, laser-heated fuel by a metal liner to achieve thermonuclear ignition. Magneto-hydrodynamics (MHD) codes calculate diagnostics to infer the state of the fuel during experiments, which cannot be measured directly. The calibration of these diagnostic metrics is complicated by sparse experimental data and the expense of high-fidelity neutron transport models. The development of an appropriate surrogate raises long-standing issues in modeling and simulation, including calibration, validation, and uncertainty quantification. The performance of the proposed multi-output GP surrogate model, which preserves correlations between QoIs, is compared to the standard single-output GP for a 1D realization of the MagLIF experiment.

More Details

An Assessment of the Laminar Hypersonic Double-Cone Experiments in the LENS-XX Tunnel

AIAA Journal

Ray, Jaideep R.; Blonigan, Patrick J.; Phipps, Eric T.; Maupin, Kathryn A.

This is an investigation on two experimental datasets of laminar hypersonic flows, over a double-cone geometry, acquired in Calspan—University at Buffalo Research Center’s Large Energy National Shock (LENS)-XX expansion tunnel. These datasets have yet to be modeled accurately. A previous paper suggested that this could partly be due to mis-specified inlet conditions. The authors of this paper solved a Bayesian inverse problem to infer the inlet conditions of the LENS-XX test section and found that in one case they lay outside the uncertainty bounds specified in the experimental dataset. However, the inference was performed using approximate surrogate models. In this paper, the experimental datasets are revisited and inversions for the tunnel test-section inlet conditions are performed with a Navier–Stokes simulator. The inversion is deterministic and can provide uncertainty bounds on the inlet conditions under a Gaussian assumption. It was found that deterministic inversion yields inlet conditions that do not agree with what was stated in the experiments. An a posteriori method is also presented to check the validity of the Gaussian assumption for the posterior distribution. This paper contributes to ongoing work on the assessment of datasets from challenging experiments conducted in extreme environments, where the experimental apparatus is pushed to the margins of its design and performance envelopes.

More Details

Towards Z-Next: The Integration of Theory, Experiments, and Computational Simulation in a Bayesian Data Assimilation Framework

Maupin, Kathryn A.; Laros, James H.; Laros, James H.; Knapp, Patrick K.; Joseph, V.R.; Wu, C.F.J.; Glinsky, Michael E.; Valaitis, Sonata M.

Making reliable predictions in the presence of uncertainty is critical to high-consequence modeling and simulation activities, such as those encountered at Sandia National Laboratories. Surrogate or reduced-order models are often used to mitigate the expense of performing quality uncertainty analyses with high-fidelity, physics-based codes. However, phenomenological surrogate models do not always adhere to important physics and system properties. This project develops surrogate models that integrate physical theory with experimental data through a maximally-informative framework that accounts for the many uncertainties present in computational modeling problems. Correlations between relevant outputs are preserved through the use of multi-output or co-predictive surrogate models; known physical properties (specifically monotoncity) are also preserved; and unknown physics and phenomena are detected using a causal analysis. By endowing surrogate models with key properties of the physical system being studied, their predictive power is arguably enhanced, allowing for reliable simulations and analyses at a reduced computational cost.

More Details

Integrated computational materials engineering with monotonic Gaussian processes

Proceedings of the ASME Design Engineering Technical Conference

Laros, James H.; Maupin, Kathryn A.; Rodgers, Theron R.

Physics-constrained machine learning is emerging as an important topic in the field of machine learning for physics. One of the most significant advantages of incorporating physics constraints into machine learning methods is that the resulting machine learning model requires significantly fewer data to train. By incorporating physical rules into the machine learning formulation itself, the predictions are expected to be physically plausible. Gaussian process (GP) is perhaps one of the most common methods in machine learning for small datasets. In this paper, we investigate the possibility of constraining a GP formulation with monotonicity on two different material datasets, where one experimental and one computational dataset is used. The monotonic GP is compared against the regular GP, where a significant reduction in the posterior variance is observed. The monotonic GP is strictly monotonic in the interpolation regime, but in the extrapolation regime, the monotonic effect starts fading away as one goes beyond the training dataset. Imposing monotonicity on the GP comes at a small accuracy cost, compared to the regular GP. The monotonic GP is perhaps most useful in applications where data is scarce and noisy or when the dimensionality is high, and monotonicity is where supported by strong physical reasoning.

More Details

Validation Metrics for Fixed Effects and Mixed-Effects Calibration

Journal of Verification, Validation and Uncertainty Quantification

Porter, N.W.; Maupin, Kathryn A.; Swiler, Laura P.; Mousseau, Vincent A.

The modern scientific process often involves the development of a predictive computational model. To improve its accuracy, a computational model can be calibrated to a set of experimental data. A variety of validation metrics can be used to quantify this process. Some of these metrics have direct physical interpretations and a history of use, while others, especially those for probabilistic data, are more difficult to interpret. In this work, a variety of validation metrics are used to quantify the accuracy of different calibration methods. Frequentist and Bayesian perspectives are used with both fixed effects and mixed-effects statistical models. Through a quantitative comparison of the resulting distributions, the most accurate calibration method can be selected. Two examples are included which compare the results of various validation metrics for different calibration methods. It is quantitatively shown that, in the presence of significant laboratory biases, a fixed effects calibration is significantly less accurate than a mixed-effects calibration. This is because the mixed-effects statistical model better characterizes the underlying parameter distributions than the fixed effects model. The results suggest that validation metrics can be used to select the most accurate calibration model for a particular empirical model with corresponding experimental data.

More Details

A Bayesian MACHINE LEARNING FRAMEWORK FOR SELECTION OF THE STRAIN GRADIENT PLASTICITY MULTISCALE MODEL

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Tan, Jingye; Maupin, Kathryn A.; Faghihi, Danial

A class of sequential multiscale models investigated in this study consists of discrete dislocation dynamics (DDD) simulations and continuum strain gradient plasticity (SGP) models to simulate the size effect in plastic deformation of metallic micropillars. The high-fidelity DDD explicitly simulates the microstructural (dislocation) interactions. These simulations account for the effect of dislocation densities and their spatial distributions on plastic deformation. The continuum SGP captures the size-dependent plasticity in micropillars using two length parameters. The main challenge in predictive DDD-SGP multiscale modeling is selecting the proper constitutive relations for the SGP model, which is necessitated by the uncertainty in computational prediction due to DDD's microstructural randomness. This contribution addresses these challenges using a Bayesian learning and model selection framework. A family of SGP models with different fidelities and complexities is constructed using various constitutive relation assumptions. The parameters of the SGP models are then learned from a set of training data furnished by the DDD simulations of micropillars. Bayesian learning allows the assessment of the credibility of plastic deformation prediction by characterizing the microstructural variability and the uncertainty in training data. Additionally, the family of the possible SGP models is subjected to a Bayesian model selection to pick the model that adequately explains the DDD training data. The framework proposed in this study enables learning the physics-based multiscale model from uncertain observational data and determining the optimal computational model for predicting complex physical phenomena, i.e., size effect in plastic deformation of micropillars.

More Details
Results 1–25 of 41
Results 1–25 of 41