Publications

Results 51–75 of 200

Search results

Jump to search filters

MFNets: data efficient all-at-once learning of multifidelity surrogates as directed networks of information sources

Computational Mechanics

Gorodetsky, Alex A.; Jakeman, John D.; Geraci, Gianluca G.

We present an approach for constructing a surrogate from ensembles of information sources of varying cost and accuracy. The multifidelity surrogate encodes connections between information sources as a directed acyclic graph, and is trained via gradient-based minimization of a nonlinear least squares objective. While the vast majority of state-of-the-art assumes hierarchical connections between information sources, our approach works with flexibly structured information sources that may not admit a strict hierarchy. The formulation has two advantages: (1) increased data efficiency due to parsimonious multifidelity networks that can be tailored to the application; and (2) no constraints on the training data—we can combine noisy, non-nested evaluations of the information sources. Finally, numerical examples ranging from synthetic to physics-based computational mechanics simulations indicate the error in our approach can be orders-of-magnitude smaller, particularly in the low-data regime, than single-fidelity and hierarchical multifidelity approaches.

More Details

Surrogate Modeling For Efficiently Accurately and Conservatively Estimating Measures of Risk

Jakeman, John D.; Kouri, Drew P.; Huerta, Jose G.

We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. We adopt a probabilistic description of risk that assigns probabilities to consequences associated with an event and use risk measures, which combine objective evidence with the subjective values of decision makers, to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical estimates obtained from the training data. These surrogate models not only limit over-confidence in reliability and safety assessments, but produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to the specific risk preferences of the stakeholder and then present an approach, based upon stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. The surrogate models introduce a bias that allows them to conservatively estimate the target risk measures. We provide theoretical results that show that this bias decays at the same rate as the L2 error in the surrogate model. Our numerical examples confirm that risk-aware surrogate models do indeed over-estimate the target risk measures while converging at the expected rate.

More Details

Adaptive resource allocation for surrogate modeling of systems comprised of multiple disciplines with varying fidelity

Friedman, Sam; Jakeman, John D.; Eldred, Michael S.; Tamellini, Lorenzo; Gorodestky, Alex A.; Allaire, Doug

We present an adaptive algorithm for constructing surrogate models for integrated systems composed of a set of coupled components. With this goal we introduce ‘coupling’ variables with a priori unknown distributions that allow approximations of each component to be built independently. Once built, the surrogates of the components are combined and used to predict system-level quantities of interest (QoI) at a fraction of the cost of interrogating the full system model. We use a greedy experimental design procedure, based upon a modification of Multi-Index Stochastic Collocation (MISC), to minimize the error of the combined surrogate. This is achieved by refining each component surrogate in accordance with its relative contribution to error in the approximation of the system-level QoI. Our adaptation of MISC is a multi-fidelity procedure that can leverage ensembles of models of varying cost and accuracy, for one or more components, to produce estimates of system-level QoI. Several numerical examples demonstrate the efficacy of the proposed approach on systems involving feed-forward and feedback coupling. For a fixed computational budget, the proposed algorithm is able to produce approximations that are orders of magnitude more accurate than approximations that treat the integrated system as a black-box.

More Details

Data-driven learning of nonautonomous systems

SIAM Journal on Scientific Computing

Qin, Tong; Chen, Zhen; Jakeman, John D.; Xiu, Dongbin

We present a numerical framework for recovering unknown nonautonomous dynamical systems with time-dependent inputs. To circumvent the difficulty presented by the nonautonomous nature of the system, our method transforms the solution state into piecewise integration of the system over a discrete set of time instances. The time-dependent inputs are then locally parameterized by using a proper model, for example, polynomial regression, in the pieces determined by the time instances. This transforms the original system into a piecewise parametric system that is locally time invariant. We then design a deep neural network structure to learn the local models. Once the network model is constructed, it can be iteratively used over time to conduct global system prediction. We provide theoretical analysis of our algorithm and present a number of numerical examples to demonstrate the effectiveness of the method.

More Details

Cholesky-based experimental design for gaussian process and kernel-based emulation and calibration

Communications in Computational Physics

Harbrecht, Helumt; Jakeman, John D.; Zaspel, Peter

Gaussian processes and other kernel-based methods are used extensively to construct approximations of multivariate data sets. The accuracy of these approximations is dependent on the data used. This paper presents a computationally efficient algorithm to greedily select training samples that minimize the weighted Lp error of kernel-based approximations for a given number of data. The method successively generates nested samples, with the goal of minimizing the error in high probability regions of densities specified by users. The algorithm presented is extremely simple and can be implemented using existing pivoted Cholesky factorization methods. Training samples are generated in batches which allows training data to be evaluated (labeled) in parallel. For smooth kernels, the algorithm performs comparably with the greedy integrated variance design but has significantly lower complexity. Numerical experiments demonstrate the efficacy of the approach for bounded, unbounded, multi-modal and non-tensor product densities. We also show how to use the proposed algorithm to efficiently generate surrogates for inferring unknown model parameters from data using Bayesian inference.

More Details

The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support

Environmental Modelling and Software

Razavi, Saman; Jakeman, Anthony; Saltelli, Andrea; Iooss, Bertrand; Borgonovo, Emanuele; Plischke, Elmar; Lo Piano, Samuele; Iwanaga, Takuya; Becker, William; Tarantola, Stefano; Guillaume, Joseph H.A.; Jakeman, John D.; Gupta, Hoshin; Melillo, Nicola; Rabitti, Giovanni; Chabridon, Vincent; Duan, Qingyun; Sun, Xifu; Smith, Stefan; Sheikholeslami, Razi; Hosseini, Nasim; Asadzadeh, Masoud; Puy, Arnald; Kucherenko, Sergei; Maier, Holger R.

Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untapped potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society.

More Details

Deep learning of parameterized equations with applications to uncertainty quantification

International Journal for Uncertainty Quantification

Qin, Tong; Chen, Zhen; Jakeman, John D.; Xiu, Dongbin

We propose a learning algorithm for discovering unknown parameterized dynamical systems by using observational data of the state variables. Our method is built upon and extends the recent work of discovering unknown dynamical systems, in particular those using a deep neural network (DNN). We propose a DNN structure, largely based upon the residual network (ResNet), to not only learn the unknown form of the governing equation but also to take into account the random effect embedded in the system, which is generated by the random parameters. Once the DNN model is successfully constructed, it is able to produce system prediction over a longer term and for arbitrary parameter values. For uncertainty quantification, it allows us to conduct uncertainty analysis by evaluating solution statistics over the parameter space.

More Details

MFNets: Multifidelity data-driven networks for Bayesian learning and prediction

International Journal for Uncertainty Quantification

Gorodetsky, Alex; Jakeman, John D.; Geraci, Gianluca G.; Eldred, Michael S.

This paper presents a multifidelity uncertainty quantification framework called MFNets. We seek to address three existing challenges that arise when experimental and simulation data from different sources are used to enhance statistical estimation and prediction with quantified uncertainty. Specifically, we demonstrate that MFNets can (1) fuse heterogeneous data sources arising from simulations with different parameterizations, e.g simulation models with different uncertain parameters or data sets collected under different environmental conditions; (2) encode known relationships among data sources to reduce data requirements; and (3) improve the robustness of existing multi-fidelity approaches to corrupted data. MFNets construct a network of latent variables (LVs) to facilitate the fusion of data from an ensemble of sources of varying credibility and cost. These LVs are posited as explanatory variables that provide the source of correlation in the observed data. Furthermore, MFNets provide a way to encode prior physical knowledge to enable efficient estimation of statistics and/or construction of surrogates via conditional independence relations on the LVs. We highlight the utility of our framework with a number of theoretical results which assess the quality of the posterior mean as a frequentist estimator and compare it to standard sampling approaches that use single fidelity, multilevel, and control variate Monte Carlo estimators. We also use the proposed framework to derive the Monte Carlo-based control variate estimator entirely from the use of Bayes rule and linear-Gaussian models -- to our knowledge the first such derivation. Finally, we demonstrate the ability to work with different uncertain parameters across different models.

More Details

Non-destructive simulation of node defects in additively manufactured lattice structures

Additive Manufacturing

Lozanovski, Bill; Downing, David; Tino, Rance; Du Plessis, Anton; Tran, Phuong; Jakeman, John D.; Shidid, Darpan; Emmelmann, Claus; Qian, Ma; Choong, Peter; Brandt, Milan; Leary, Martin

Additive Manufacturing (AM), commonly referred to as 3D printing, offers the ability to not only fabricate geometrically complex lattice structures but parts in which lattice topologies in-fill volumes bounded by complex surface geometries. However, current AM processes produce defects on the strut and node elements which make up the lattice structure. This creates an inherent difference between the as-designed and as-fabricated geometries, which negatively affects predictions (via numerical simulation) of the lattice's mechanical performance. Although experimental and numerical analysis of an AM lattice's bulk structure, unit cell and struts have been performed, there exists almost no research data on the mechanical response of the individual as-manufactured lattice node elements. This research proposes a methodology that, for the first time, allows non-destructive quantification of the mechanical response of node elements within an as-manufactured lattice structure. A custom-developed tool is used to extract and classify each individual node geometry from micro-computed tomography scans of an AM fabricated lattice. Voxel-based finite element meshes are generated for numerical simulation and the mechanical response distribution is compared to that of the idealised computer-aided design model. The method demonstrates compatibility with Uncertainty Quantification methods that provide opportunities for efficient prediction of a population of nodal responses from sampled data. Overall, the non-destructive and automated nature of the node extraction and response evaluation is promising for its application in qualification and certification of additively manufactured lattice structures.

More Details

Modeling Water Quality in Watersheds: From Here to the Next Generation

Water Resources Research

Fu, B.; Horsburgh, J.S.; Jakeman, A.J.; Gualtieri, C.; Arnold, T.; Marshall, L.; Green, T.R.; Quinn, N.W.T.; Volk, M.; Hunt, R.J.; Vezzaro, L.; Croke, B.F.W.; Jakeman, John D.; Snow, V.; Rashleigh, B.

In this synthesis, we assess present research and anticipate future development needs in modeling water quality in watersheds. We first discuss areas of potential improvement in the representation of freshwater systems pertaining to water quality, including representation of environmental interfaces, in-stream water quality and process interactions, soil health and land management, and (peri-)urban areas. In addition, we provide insights into the contemporary challenges in the practices of watershed water quality modeling, including quality control of monitoring data, model parameterization and calibration, uncertainty management, scale mismatches, and provisioning of modeling tools. Finally, we make three recommendations to provide a path forward for improving watershed water quality modeling science, infrastructure, and practices. These include building stronger collaborations between experimentalists and modelers, bridging gaps between modelers and stakeholders, and cultivating and applying procedural knowledge to better govern and support water quality modeling processes within organizations.

More Details

A Survey of Constrained Gaussian Process: Approaches and Implementation Challenges

Journal of Machine Learning for Modeling and Computing

Swiler, Laura P.; Gulian, Mamikon G.; Frankel, Ari L.; Safta, Cosmin S.; Jakeman, John D.

Gaussian process regression is a popular Bayesian framework for surrogate modeling of expensive data sources. As part of a larger effort in scientific machine learning, many recent works have incorporated physical constraints or other a priori information within Gaussian process regression to supplement limited data and regularize the behavior of the model. We provide an overview and survey of several classes of Gaussian process constraints, including positivity or bound constraints, monotonicity and convexity constraints, differential equation constraints provided by linear PDEs, and boundary condition constraints. We compare the strategies behind each approach as well as the differences in implementation, concluding with a discussion of the computational challenges introduced by constraints.

More Details

Arctic Tipping Points Triggering Global Change (LDRD Final Report)

Peterson, Kara J.; Powell, Amy J.; Kalashnikova, Irina; Roesler, Erika L.; Nichol, Jeffrey N.; Peterson, Matthew G.; Davis, Warren L.; Jakeman, John D.; Stracuzzi, David J.; Bull, Diana L.

The Arctic is warming and feedbacks in the coupled Earth system may be driving the Arctic to tipping events that could have critical downstream impacts for the rest of the globe. In this project we have focused on analyzing sea ice variability and loss in the coupled Earth system Summer sea ice loss is happening rapidly and although the loss may be smooth and reversible, it has significant consequences for other Arctic systems as well as geopolitical and economic implications. Accurate seasonal predictions of sea ice minimum extent and long-term estimates of timing for a seasonally ice-free Arctic depend on a better understanding of the factors influencing sea ice dynamics and variation in this strongly coupled system. Under this project we have investigated the most influential factors in accurate predictions of September Arctic sea ice extent using machine learning models trained separately on observational data and on simulation data from five E3SM historical ensembles. Monthly averaged data from June, July, and August for a selection of ice, ocean, and atmosphere variables were used to train a random forest regression model. Gini importance measures were computed for each input feature with the testing data. We found that sea ice volume is most important earlier in the season (June) and sea ice extent became a more important predictor closer to September. Results from this study provide insight into how feature importance changes with forecast length and illustrates differences between observational data and simulated Earth system data. We have additionally performed a global sensitivity analysis (GSA) using a fully coupled ultra- low resolution configuration E3SM. To our knowledge, this is the first global sensitivity analysis involving the fully-coupled E3SM Earth system model. We have found that parameter variations show significant impact on the Arctic climate state and atmospheric parameters related to cloud parameterizations are the most significant. We also find significant interactions between parameters from different components of E3SM. The results of this study provide invaluable insight into the relative importance of various parameters from the sea ice, atmosphere and ocean components of the E3SM (including cross-component parameter interactions) on various Arctic-focused quantities of interest (QOIs).

More Details
Results 51–75 of 200
Results 51–75 of 200