Publications

Results 1–25 of 38

Search results

Jump to search filters

Measurement of Photovoltaic Module Deformation Dynamics during Hail Impact Using Digital Image Correlation

IEEE Journal of Photovoltaics

Hartley, James Y.; Shimizu, Michael A.; Braid, Jennifer L.; Flanagan, Ryan; Reu, Phillip L.

Stereo high-speed video of photovoltaic modules undergoing laboratory hail tests was processed using digital image correlation to determine module surface deformation during and immediately following impact. The purpose of this work was to demonstrate a methodology for characterizing module impact response differences as a function of construction and incident hail parameters. Video capture and digital image analysis were able to capture out-of-plane module deformation to a resolution of ±0.1 mm at 11 kHz on an in-plane grid of 10 × 10 mm over the area of a 1 × 2 m commercial photovoltaic module. With lighting and optical adjustments, the technique was adaptable to arbitrary module designs, including size, backsheet color, and cell interconnection. Impacts were observed to produce an initially localized dimple in the glass surface, with peak deflection proportional to the square root of incident energy. Subsequent deformation propagation and dissipation were also captured, along with behavior for instances when the module glass fractured. Natural frequencies of the module were identifiable by analyzing module oscillations postimpact. Limitations of the measurement technique were that the impacting ice ball obscured the data field immediately surrounding the point of contact, and both ice and glass fracture events occurred within 100 μs, which was not resolvable at the chosen frame rate. Increasing the frame rate and visualizing the back surface of the impact could be applied to avoid these issues. Applications for these data include validating computational models for hail impacts, identifying the natural frequencies of a module, and identifying damage initiation mechanisms.

More Details

Horizon Profiling Methods for Photovoltaic Arrays

Conference Record of the IEEE Photovoltaic Specialists Conference

Braid, Jennifer L.; Pierce, Benjamin G.

In this work, we introduce and compare the results of several methods for determining the horizon profile at a PV site, and compare their use cases and limitations. The methods in this paper include horizon detection from time-series irradiance or performance data, modeling from GIS topology data, manual theodolite measurements, and camera-based horizon detection. We compare various combinations of these methods using data from 4 Regional Test Center sites in the US, and 3 World Bank sites in Nepal. The results show many differences between these methods, and we recommend the most practical solutions for various use-cases.

More Details

Solar Transposition Modeling via Deep Neural Networks with Sky Images

IEEE Journal of Photovoltaics

Pierce, Benjamin G.; Braid, Jennifer L.; Stein, Joshua S.; Augustyn, Jim; Riley, Daniel R.

This article presents a notable advance toward the development of a new method of increasing the single-axis tracking photovoltaic (PV) system power output by improving the determination and near-term prediction of the optimum module tilt angle. The tilt angle of the plane receiving the greatest total irradiance changes with Sun position and atmospheric conditions including cloud formation and movement, aerosols, and particulate loading, as well as varying albedo within a module's field of view. In this article, we present a multi-input convolutional neural network that can create a profile of plane-of-array irradiance versus surface tilt angle over a full 180^{\circ } arc from horizon to horizon. As input, the neural network uses the calculated solar position and clear-sky irradiance values, along with sky images. The target irradiance values are provided by the multiplanar irradiance sensor (MPIS). In order to account for varying irradiance conditions, the MPIS signal is normalized by the theoretical clear-sky global horizontal irradiance. Using this information, the neural network outputs an N-dimensional vector, where N is the number of points to approximate the MPIS curve via Fourier resampling. The output vector of the model is smoothed with a Gaussian kernel to account for error in the downsamping and subsequent upsampling steps, as well as to smooth the unconstrained output of the model. These profiles may be used to perform near-term prediction of angular irradiance, which can then inform the movement of a PV tracker.

More Details

Dedicated cold-climate field laboratory for photovoltaic system and component studies: the Michigan Regional Test Center as a case study

Conference Record of the IEEE Photovoltaic Specialists Conference

Burnham, Laurie B.; Riley, Daniel R.; King, Bruce H.; Braid, Jennifer L.; Dice, Paul; Dyreson, Ana; Snyder, William C.; Pike, Christopher

Snow and ice accumulation on photovoltaic (PV) panels is a recognized-but poorly quantified-contributor to PV performance, not only in geographic areas that see persistent snow in winter but also at lower latitudes, where frozen precipitation and 'snowmageddon' events can wreak havoc with the solar infrastructure. In addition, research on the impact of snow and cold on PV systems has not kept pace with the proliferation of new technologies, the rapid deployment of PV in northern latitudes, and experiences with long-term field performance. This paper describes the value of a dedicated outdoor research facility for longitudinal performance and reliability studies of emerging technologies in cold climates.

More Details

Effective Irradiance Monitoring Using Reference Modules

Conference Record of the IEEE Photovoltaic Specialists Conference

Braid, Jennifer L.; Stein, Joshua S.; King, Bruce H.; Raupp, Christopher; Mallineni, Jaya; Robinson, Justin; Knapp, Steve

We evaluate the use of reference modules for monitoring effective irradiance in PV power plants, as compared with traditional plane-of-array (POA) irradiance sensors, for PV monitoring and capacity tests. Common POA sensors such as pyranometers and reference cells are unable to capture module-level irradiance nonuniformity and require several correction factors to accurately represent the conditions for fielded modules. These problems are compounded for bifacial systems, where the power loss due to rear side shading and rear-side plane-of-array (RPOA) irradiance gradients are greater and more difficult to quantify. The resulting inaccuracy can have costly real-world consequences, particularly when the data are used to perform power ratings and capacity tests. Here we analyze data from a bifacial single-axis tracking PV power plant, (175.6 MWdc) using 5 meteorological (MET) stations, located on corresponding inverter blocks with capacities over 4 MWdc. Each MET station consists of bifacial reference modules as well pyranometers mounted in traditional POA and RPOA installations across the PV power plant. Short circuit current measurements of the reference modules are converted to effective irradiance with temperature correction and scaling based on flash test or nameplate short circuit values. Our work shows that bifacial effective irradiance measured by pyranometers averages 3.6% higher than the effective irradiance measured by bifacial reference modules, even when accounting for spectral, angle of incidence, and irradiance nonuniformity. We also performed capacity tests using effective irradiance measured by pyranometers and reference modules for each of the 5 bifacial single-axis tracking inverter blocks mentioned above. These capacity tests evaluated bifacial plant performance at ∼3.9% lower when using bifacial effective irradiance from pyranometers as compared to the same calculation performed with reference modules.

More Details

Effective Irradiance Monitoring Using Reference Modules

Conference Record of the IEEE Photovoltaic Specialists Conference

Braid, Jennifer L.; Stein, Joshua S.; King, Bruce H.; Raupp, Christopher; Mallineni, Jaya; Robinson, Justin; Knapp, Steve

We evaluate the use of reference modules for monitoring effective irradiance in PV power plants, as compared with traditional plane-of-array (POA) irradiance sensors, for PV monitoring and capacity tests. Common POA sensors such as pyranometers and reference cells are unable to capture module-level irradiance nonuniformity and require several correction factors to accurately represent the conditions for fielded modules. These problems are compounded for bifacial systems, where the power loss due to rear side shading and rear-side plane-of-array (RPOA) irradiance gradients are greater and more difficult to quantify. The resulting inaccuracy can have costly real-world consequences, particularly when the data are used to perform power ratings and capacity tests. Here we analyze data from a bifacial single-axis tracking PV power plant, (175.6 MWdc) using 5 meteorological (MET) stations, located on corresponding inverter blocks with capacities over 4 MWdc. Each MET station consists of bifacial reference modules as well pyranometers mounted in traditional POA and RPOA installations across the PV power plant. Short circuit current measurements of the reference modules are converted to effective irradiance with temperature correction and scaling based on flash test or nameplate short circuit values. Our work shows that bifacial effective irradiance measured by pyranometers averages 3.6% higher than the effective irradiance measured by bifacial reference modules, even when accounting for spectral, angle of incidence, and irradiance nonuniformity. We also performed capacity tests using effective irradiance measured by pyranometers and reference modules for each of the 5 bifacial single-axis tracking inverter blocks mentioned above. These capacity tests evaluated bifacial plant performance at ∼3.9% lower when using bifacial effective irradiance from pyranometers as compared to the same calculation performed with reference modules.

More Details

Optical Detection of Crack Separation in Si PV Modules

Braid, Jennifer L.; Stein, Joshua S.; Robinson, Charles D.; Harwood, Duncan

Studying the mechanical behavior of silicon cell fractures is critical for understanding changes in PV module performance. Traditional methods of detecting cell cracks, e.g., electroluminescence (EL) imaging, utilize electrical changes and defects associated with cell fracture. Therefore, these methods reveal crack locations, but do not operate at the time or length scales required to accurately measure other physical properties of cracks, such as separation width and behavior under dynamic loads.

More Details

Degradation mechanisms and partial shading of glass-backsheet and double-glass photovoltaic modules in three climate zones determined by remote monitoring of time-series current–voltage and power datastreams

Solar Energy

Liu, Jiqi; Wang, Menghong; Curran, Alan J.; Schnabel, Erdmut; Kohl, Michael; Braid, Jennifer L.; French, Roger H.

Degradation and partial shading impact the long-term reliability and power production of photovoltaic (PV) modules and power plants. Time-series power (Pmp) and current–voltage (I-V) curve datastreams from PV modules enable a remote diagnostic approach to quantify active degradation mechanisms and identify partial shading. We study three to nine years of these datastreams, including 3.6 million I-V curves and 36 million Pmp values, from eight PV modules, four each of double-glass and glass-backsheet module architectures, located in three distinctly different Köppen-Geiger climate zones, to determine the module's performance loss rates (PLR), identify active degradation mechanisms and power loss modes, along with partial shading by local objects. Considering both module architectures, PLR results indicate that the BSh climate zone is the most aggressive for module degradation, while the Alpine ET zone is the mildest climate. PLR of double-glass modules located in BWh and BSh climate zones are different due to the significantly greater uniform current loss (ΔPIsc) for double-glass modules in BSh, at a 5% significance level. Power loss for four out of five modules located in the BWh and BSh climates are dominated by uniform current degradation. Statistical analysis of multistep I-V curves detects partial shading experienced by three studied modules with details of the shading profile, the shading Poynting vector diagram for the obstacle's relative position, shading scenarios, and duration. This work demonstrates how remote monitoring and diagnosis of Pmp & I-V time-series of modules can provide quantitative operations and maintenance insights into system performance, degradation mechanisms, and shading.

More Details

Degradation of PERC and Al-BSF Cells with UV Cutoff and White Variations of EVA and POE Encapsulant

Conference Record of the IEEE Photovoltaic Specialists Conference

Curran, Alan J.; Colvin, Dylan; Iqbal, Nafis; Davis, Kris O.; Moran, Thomas; Huey, Bryan D.; Brownell, Brent; Yu, Ben; Braid, Jennifer L.; Bruckman, Laura S.; French, Roger H.

To assess the reliability of PERC cells compared to Al-BSF in a commercial setting minimodules with cell and encapsulant combinations are compared in accelerated exposure. In both modified damp heat and modified damp heat with full spectrum light exposures, white EVA samples showed a higher susceptibility for metallization corrosion degradation than all other encapsulants. Al-BSF cells in particular showed higher power loss than PERC cells with white EVA. It was observed that the degree of degradation had a strong significance on the manufacturer of the white EVA encapsulant. In both exposures the encapsulant was a much stronger predictor of degradation than cell type. For modules with the same encapsulant, PERC cells showed the higher performance or were comparable to Al-BSF cells for all but one case.

More Details

Properties of PV Cell Fractures and Effects on Performance of Al-BSF and PERC Modules

Conference Record of the IEEE Photovoltaic Specialists Conference

Whitaker, Carolina M.; Pierce, Benjamin G.; French, Roger H.; Braid, Jennifer L.

Cell cracking in PV modules can lead to a variety of changes in module operation, with vastly different performance degradation based on the type and severity of the cracks. In this work, we demonstrate automated measurement of cell crack properties from electroluminescence images, and correlate these properties with current-voltage curve features on 35 four-cell Al-BSF and PERC mini-modules showing a range of crack types and severity. Power loss in PERC modules was associated with more total crack length, resulting in electrical isolation of cell areas and mild shunting and recombination. Many of the Al-BSF modules suffered catastrophic power loss due to crack-related shunts. Mild power loss in Al-BSF modules was not as strongly correlated with total crack length; instead crack angles and branching were better indicators of module performance for this cell type.

More Details

Toward Findable, Accessible, Interoperable and Reusable (FAIR) Photovoltaic System Time Series Data

Conference Record of the IEEE Photovoltaic Specialists Conference

Nihar, Arafath; Curran, Alan J.; Karimi, Ahmad M.; Braid, Jennifer L.; Bruckman, Laura S.; Koyuturk, Mehmet; Wu, Yinghui; French, Roger H.

We present the application of FAIR principles to photovoltaic time series data to increase their reusability within the photovoltaic research community. The main requirements for a "FAIRified"dataset is to have a clearly defined data format, and to make accessible all metadata for this dataset to humans and machines. To achieve FAIRification, we implement a data model that separates the photovoltaic data and its metadata. The metadata and their descriptions are registered on a data repository in a human and machine readable format, using JSON-LD. Also, secure APIs are developed to access photovoltaic data. This approach has long term scalability and maintainability.

More Details

Degradation Pathway Modeling of PV Minimodule Variants with Different Packaging Materials under Indoor Accelerated Exposures

Conference Record of the IEEE Photovoltaic Specialists Conference

Venkat, Sameera N.; Liu, Jiqi; Wegmueller, Jakob; Yu, Ben; Gould, Brian; Li, Xinjun; Braid, Jennifer L.; Bruckman, Laura S.; French, Roger H.

Network structural equation modeling has been used for degradation modeling of glass/backsheet (GB) and double glass (DG) PERC PV minimodules, made by CSI and CWRU. The encapsulants used were ethylene vinyl acetate (EVA) and polyolefin elastomer (POE). The exposures included modified damp heat (80°C and 85% relative humidity), with and without full spectrum light. Each exposure cycle consists of 2520 hours, 5 steps of 504 hours each. The data from I-V and Suns-Voc was used in the analysis. We observe that most DG minimodules exhibit stability in power with exposure time and GB minimodules by CWRU showed a power loss of 5-6% on average due to corrosion.

More Details
Results 1–25 of 38
Results 1–25 of 38