Publications

Results 76–100 of 131

Search results

Jump to search filters

Characterization of the surface changes during the activation of erbium/erbium oxide for hydrogen storage

Zavadil, Kevin R.; Snow, Clark S.; Ohlhausen, J.A.

Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

More Details

Predicting fracture in micron-scale polycrystalline silicon MEMS structures

Boyce, Brad B.; Foulk, James W.; Field, Richard V.; Ohlhausen, J.A.

Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile strength distribution to predict the strength of a complex MEMS structure. To address such issues, two recently developed high throughput MEMS tensile test techniques have been used to measure strength distribution tails. The measured tensile strength distributions enable the definition of a threshold strength as well as an inferred maximum flaw size. The nature of strength-controlling flaws has been identified and sources of the observed variation in strength investigated. A double edge-notched specimen geometry was also tested to study the effect of a severe, micron-scale stress concentration on the measured strength distribution. Strength-based, Weibull-based, and fracture mechanics-based failure analyses were performed and compared with the experimental results.

More Details

Spectroscopy and capacitance measurements of tunneling resonances in an Sb-implanted point contact

Bishop, Nathaniel B.; Stevens, Jeffrey S.; Childs, Kenton D.; Ohlhausen, J.A.; Lilly, Michael L.; Carroll, Malcolm; Young, Ralph W.; Bielejec, Edward S.; Ten Eyck, Gregory A.; Wendt, J.R.; Rahman, Rajib R.; Grubbs, Robert K.

We fabricated a split-gate defined point contact in a double gate enhancement mode Si-MOS device, and implanted Sb donor atoms using a self-aligned process. E-beam lithography in combination with a timed implant gives us excellent control over the placement of dopant atoms, and acts as a stepping stone to focused ion beam implantation of single donors. Our approach allows us considerable latitude in experimental design in-situ. We have identified two resonance conditions in the point contact conductance as a function of split gate voltage. Using tunneling spectroscopy, we probed their electronic structure as a function of temperature and magnetic field. We also determine the capacitive coupling between the resonant feature and several gates. Comparison between experimental values and extensive quasi-classical simulations constrain the location and energy of the resonant level. We discuss our results and how they may apply to resonant tunneling through a single donor.

More Details

LDRD 140639 final report : investigation of transmutation claims

Reich, Jeffrey E.; Grant, Richard P.; Ohlhausen, J.A.

The Proton-21 Laboratory in the Ukraine has been publishing results on shock-induced transmutation of several elements, including Cobalt 60 into non-radioactive elements. This report documents exploratory characterization of a shock-compressed Aluminum-6061 sample, which is the only available surrogate for the high-purity copper samples in the Proton-21 experiments. The goal was to determine Sandia's ability to detect possible shock-wave-induced transmutation products and to unambiguously validate or invalidate the claims in collaboration with the Proton-21 Laboratory. We have developed a suitable characterization process and tested it on the surrogate sample. Using trace elemental analysis capabilities, we found elevated and localized concentrations of impurity elements like the Ukrainians report. All our results, however, are consistent with the ejection of impurities that were not in solution in our alloy or were deposited from the cathode during irradiation or possibly storage. Based on the detection capabilities demonstrated and additional techniques available, we are positioned to test samples from Proton-21 if funded to do so.

More Details

Multivariate statistical analysis of three-spatial-dimension TOF-SIMS raw data sets

Analytical Chemistry

Smentkowski, V.S.; Ostrowski, S.G.; Braunstein, E.; Keenan, M.R.; Ohlhausen, J.A.; Kotula, Paul G.

Three-spatial-dimension (3D) time-of-flight-secondary ion mass spectrometry (TOF-SIMS) analysis can be performed if an X-Y image is saved at each depth of a depth profile. In this paper, we will show how images reconstructed from specified depths, depth profiles generated from specific X-Y coordinates, as well as three-spatial-dimensional rendering provide for a better understanding of the sample than traditional depth profiling where only a single spectrum is collected at each depth. We will also demonstrate, for the first time, that multivariate statistical analysis (MVSA) tools can be used to perform a rapid, unbiased analysis of the entire 3D data set. In the example shown here, retrospective analysis and MVSA revealed a more complete picture of the 3D chemical distribution of the sample than did the as-measured depth profiling alone. Color overlays of the MVSA components as well as animated movies allowing for visualization (in 3D) from various angles will be provided. © 2007 American Chemical Society.

More Details
Results 76–100 of 131
Results 76–100 of 131