Facet Evolution in GaN Chemical Etching for 3D Structures and Optical Microcavities
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A unique, micro-scale architecture is proposed to create a novel hybrid concentrated photovoltaic system. Micro-scale (sub-millimeter wide), multi-junction cells are attached to a large-area silicon cell backplane (several inches wide) that can optimally collect both direct and diffuse light. By using multi- junction III-V cells, we can get the highest possible efficiency of the direct light input. In addition, by collecting the diffuse light in the large-area silicon cell, we can produce power on cloudy days when the concentrating cells would have minimal output. Through the use of micro-scale cells and lenses, the overall assembly will provide higher efficiency than conventional concentrators and flat plates, while keeping the form factor of a flat plate module. This report describes the hybrid concept, the design of a prototype, including the PV cells and optics, and the experimental results.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nanoscale
We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm-2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.
Applied Physics Letters
We report non-linear electronic transport measurement of Al/Si-doped n-type InN nanowire/Al junctions performed at T = 0.3 K, below the superconducting transition temperature of the Al electrodes. The proximity effect is observed in these devices through a strong dip in resistance at zero bias. In addition to the resistance dip at zero bias, several resistance peaks can be identified at bias voltages above the superconducting gap of the electrodes, while no resistance dip is observed at the superconducting gap. The resistance peaks disappear as the Al electrodes turn normal beyond the critical magnetic field except one which remains visible at fields several times higher than critical magnetic field. An unexpected non-monotonic magnetic field dependence of the peak position is observed. We discuss the physical origin of these observations and propose that the resistance peaks could be the McMillan-Rowell oscillations arising from different closed paths localized near different regions of the junctions.
Abstract not provided.
Abstract not provided.
Nanotechnology
The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. Selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.
Journal of Physical Chemistry C
Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In2O3 and/or Ga2O3) form which interfere with quantum dot formation. At pH below 3, however, oxide-free QDs with self-terminated sizes can be successfully realized.
Nano Letters
Semiconducting nanowires have been explored for a number of applications in optoelectronics such as photodetectors and solar cells. Currently, there is ample interest in identifying the mechanisms that lead to photoresponse in nanowires in order to improve and optimize performance. However, distinguishing among the different mechanisms, including photovoltaic, photothermoelectric, photoemission, bolometric, and photoconductive, is often difficult using purely optoelectronic measurements. In this work, we present an approach for performing combined and simultaneous thermoelectric and optoelectronic measurements on the same individual nanowire. We apply the approach to GaN/AlGaN core/shell and GaN/AlGaN/GaN core/shell/shell nanowires and demonstrate the photothermoelectric nature of the photocurrent observed at the electrical contacts at zero bias, for above- and below-bandgap illumination. Furthermore, the approach allows for the experimental determination of the temperature rise due to laser illumination, which is often obtained indirectly through modeling. We also show that under bias, both above- and below-bandgap illumination leads to a photoresponse in the channel with signatures of persistent photoconductivity due to photogating. Finally, we reveal the concomitant presence of photothermoelectric and photogating phenomena at the contacts in scanning photocurrent microscopy under bias by using their different temporal response. Furthermore, our approach is applicable to a broad range of nanomaterials to elucidate their fundamental optoelectronic and thermoelectric properties.
2015 IEEE Summer Topicals Meeting Series, SUM 2015
Compared to planar films, III-nitride nanowires have several potential advantages for device applications. Using a top-down approach, high quality III-nitride-based nanowires with controllable height, pitch and diameter have been realized. The fabrication, structural characterization, and luminescence of both axial and radial type III-nitride nanowire LEDs will be presented, along with a discussion of their relative merits and weaknesses. The lasing characteristics of GaN-based and GaN/InGaN based nanowires fabricated by this approach will also be presented, along with schemes for single optical mode selection, polarization control, beam shaping, and wavelength tuning. Preliminary results on the top-down fabrication and characterization of AlGaN nanowires will also be presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.
Abstract not provided.
Journal of Crystal Growth
Ammonia-based molecular beam epitaxy (NH
Nanoscale
We report continuous, dynamic, reversible, and widely tunable lasing from 367 to 337 nm from single GaN nanowires (NWs) by applying hydrostatic pressure up to ∼7 GPa. The GaN NW lasers, with heights of 4-5 μm and diameters ∼140 nm, are fabricated using a lithographically defined two-step top-down technique. The wavelength tuning is caused by an increasing Γ direct bandgap of GaN with increasing pressure and is precisely controllable to subnanometer resolution. The observed pressure coefficients of the NWs are ∼40% larger compared with GaN microstructures fabricated from the same material or from reported bulk GaN values, revealing a nanoscale-related effect that significantly enhances the tuning range using this approach. This approach can be generally applied to other semiconductor NW lasers to potentially achieve full spectral coverage from the UV to IR.
Abstract not provided.
CLEO: Science and Innovations, CLEO-SI 2015
Lasing is demonstrated from nonpolar III-nitride core-shell multi-quantum-well nanowires. The nanowire lasers were fabricated by coupling a top-down and bottom-up methodology and achieved lasing at wavelengths below the GaN bandedge. © OSA 2015.
Abstract not provided.
Abstract not provided.
Electrochimica Acta
We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using a narrowband laser with a linewidth less than ∼1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale, and ultimately the self-limiting etch kinetics lead to an ensemble of nanoparticles. This change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 1015cm-2 (or 1.25 × 1014cm-2 per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm2/Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.
Nano Letters
We demonstrate a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10 nm size regime: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. We show that quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and that the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength. Low-temperature photoluminescence from ensembles of such QDs have peak wavelengths that can be tunably blue shifted by 35 nm (from 440 to 405 nm) and have line widths that narrow by 3 times (from 19 to 6 nm).
Abstract not provided.
Applied Physics Letters
A hyperbolic metamaterial (HM) resonator is analyzed as a nano-antenna for enhancing the radiative emission of quantum emitters in its vicinity. It has been shown that the spontaneous emission rate by an emitter near a hyperbolic metamaterial substrate is enhanced dramatically due to very large density of states. However, enhanced coupling to the free-space, which is central to applications such as solid-state lighting, has not been investigated significantly. Here, we numerically demonstrate approximately 100 times enhancement of the free-space radiative emission at 660nm wavelength by utilizing a cylindrical HM resonator with a radius of 54nm and a height of 80nm on top of an opaque silver-cladded substrate. We also show how the free-space radiation enhancement factor depends on the dipole orientation and the location of the emitter near the subwavelength resonator. Furthermore, we calculate that an array of HM resonators with subwavelength spacings can maintain most of the enhancement effect of a single resonator.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
Abstract not provided.
Conference on Lasers and Electro-Optics Europe - Technical Digest
We have demonstrated single-mode lasing in a single gallium nitride nanowire using distributed feedback by external coupling to a dielectric grating. By adjusting the nanowire grating alignment we achieved a mode suppression ratio of 17dB.
Conference on Lasers and Electro-Optics Europe - Technical Digest
Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step topdown technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physica Status Solidi C
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
Abstract not provided.
Physica Status Solidi c
Abstract not provided.
Nano Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Nanotechnology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Optics Express
We demonstrate stable, single-frequency output from single, asfabricated GaN nanowire lasers operating far above lasing threshold. Each laser is a linear, double-facet GaN nanowire functioning as gain medium and optical resonator, fabricated by a top-down technique that exploits a tunable dry etch plus anisotropic wet etch for precise control of the nanowire dimensions and high material gain. A single-mode linewidth of ∼0.12 nm and >18dB side-mode suppression ratio are measured. Numerical simulations indicate that single-mode lasing arises from strong mode competition and narrow gain bandwidth. © 2012 Optical Society of America.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Photonic crystals (PC) can fundamentally alter the emission behavior of light sources by suitably modifying the electromagnetic environment around them. Strong modulation of the photonic density of states especially by full threedimensional (3D) bandgap PCs, enables one to completely suppress emission in undesired wavelengths and directions while enhancing desired emission. This property of 3DPC to control spontaneous emission, opens up new regimes of light-matter interaction in particular, energy efficient and high brightness visible lighting. Therefore a 3DPC composed entirely of gallinum nitride (GaN), a key material used in visible light emitting diodes can dramatically impact solid state lighting. The following work demonstrates an all GaN logpile 3DPC with bandgap in the visible fabricated by a template directed epitaxial growth. © 2012 SPIE.
Abstract not provided.
Abstract not provided.