Publications

Results 51–75 of 265

Search results

Jump to search filters

Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressures

Journal of Physical Chemistry C

Srivastava, Ishan S.; Peters, Brandon L.; Lane, James M.; Fan, Hongyou F.; Salerno, K.M.; Grest, Gary S.

Pressure-driven assembly of ligand-grafted gold nanoparticle superlattices is a promising approach for fabricating gold nanostructures, such as nanowires and nanosheets. Optimizing this fabrication method will require extending our understanding of superlattice mechanics to regimes of high pressures. We use molecular dynamics simulations to characterize the response of alkanethiol-grafted gold nanoparticle superlattices to applied hydrostatic pressures up to 15 GPa. At low applied pressures, intrinsic voids govern the mechanics of compaction. As applied pressures increase, the void collapse and ligand compression depend significantly on the ligand length. These microstructural observations correlate directly with trends in bulk modulus and elastic constants. For short ligands, core-core contact between gold nanoparticles is observed at high pressures, which augurs irreversible response and eventual sintering. This presintering behavior was unexpected under hydrostatic loading and is observed only for the shortest ligands.

More Details

Stratification of drying particle suspensions: Comparison of implicit and explicit solvent simulations

Journal of Chemical Physics

Tang, Yanfei; Grest, Gary S.; Cheng, Shengfeng

Large scale molecular dynamics simulations are used to study drying suspensions of a binary mixture of large and small particles in explicit and implicit solvents. The solvent is first modeled explicitly and then mapped to a uniform viscous medium by matching the diffusion coefficients and the pair correlation functions of the particles. "Small-on-top" stratification of the particles, with an enrichment of the smaller ones at the receding liquid-vapor interface during drying, is observed in both models under the same drying conditions. With the implicit solvent model, we are able to model much thicker films and study the effect of the initial film thickness on the final distribution of particles in the dry film. Our results show that the degree of stratification is controlled by the Péclet number defined using the initial film thickness as the characteristic length scale. When the Péclet numbers of large and small particles are much larger than 1, the degree of "small-on-top" stratification is first enhanced and then weakens as the Péclet numbers are increased.

More Details

Effect of shape and friction on the packing and flow of granular materials

Physical Review E

Salerno, K.M.; Bolintineanu, Dan S.; Grest, Gary S.; Lechman, Jeremy B.; Plimpton, Steven J.; Srivastava, Ishan S.; Silbert, Leonardo E.

The packing and flow of aspherical frictional particles are studied using discrete element simulations. Particles are superballs with shape |x|s+|y|s+|z|s=1 that varies from sphere (s=2) to cube (s=), constructed with an overlapping-sphere model. Both packing fraction, φ, and coordination number, z, decrease monotonically with microscopic friction μ, for all shapes. However, this decrease is more dramatic for larger s due to a reduction in the fraction of face-face contacts with increasing friction. For flowing grains, the dynamic friction μ - the ratio of shear to normal stresses - depends on shape, microscopic friction, and inertial number I. For all shapes, μ grows from its quasistatic value μ0 as (μ-μ0)=dIα, with different universal behavior for frictional and frictionless shapes. For frictionless shapes the exponent α≈0.5 and prefactor d≈5μ0 while for frictional shapes α≈1 and d varies only slightly. The results highlight that the flow exponents are universal and are consistent for all the shapes simulated here.

More Details

Polymer Topology Effects on Dynamics of Comb Polymer Melts

Macromolecules

Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary S.

Controlling polymer viscosity and flow is key to their many applications through strength and processability. The topology of the polymer i.e., linear, stars, and branched, affects the macroscopic flow characteristics of melts, where introducing one branch is sufficient to increase the viscosity significantly. While a number of studies have probed the effects of polymer topology on their rheology, the molecular understanding that underlies the macroscopic behavior remains an open question. The current study uses molecular dynamics simulations to resolve the effects of topology of polymer melts on chain mobility and viscosity in the comb regime using polyethylene as a model system. A coarse-grained model where four methylene groups constitute one bead is used, and the results are transposed to the atomistic level. We find that while the number of branches only slightly affects the chain mobility and viscosity, their length strongly impacts their behavior. The results are discussed in terms of interplay between the relaxation of the branches and reptation of the backbone where the topology of the polymer affects the tube dimensions.

More Details

Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressure

Srivastava, Ishan; Peters, Brandon L.; Lane, James M.; Fan, Hongyou F.; Grest, Gary S.; Salerno, Michael K.

Pressure-driven assembly of ligand-grafted gold nanoparticle superlattices is a promising approach for fabricating gold nanostructures, such as nanowires and nanosheets. However, optimizing this fabrication method requires an understanding of the mechanics of their complex hierarchical assemblies at high pressures. We use molecular dynamics simulations to characterize the response of alkanethiol-grafted gold nanoparticle superlattices to applied hydrostatic pressures up to 15 GPa, and demonstrate that the internal mechanics significantly depend on ligand length. At low pressures, intrinsic voids govern the mechanics of pressure-induced compaction, and the dynamics of collapse of these voids under pressure depend significantly on ligand length. These microstructural observations correlate well with the observed trends in bulk modulus and elastic constants. For the shortest ligands at high pressures, coating failure leads to gold core-core contact, an augur of irreversible response and eventual sintering. This behavior was unexpected under hydrostatic loading, and was only observed for the shortest ligands.

More Details

Temperature response of soft ionizable polymer nanoparticles

Journal of Chemical Physics

Wijesinghe, Sidath; Perahia, Dvora; Grest, Gary S.

The temperature response of luminescent ionizable polymers confined into far from equilibrium nanoparticles without chemical links was studied using molecular dynamics simulations. These nanoparticles, often referred to as polydots, are emerging as a promising tool for nanomedicine. Incorporating ionizable groups into these polymers enables biofunctionality; however, they also affect the delicate balance of interactions that hold these nanoparticles together. Here polydots formed by a model polymer dialkyl p-phenylene ethynylene with varying number of carboxylate groups along the polymer backbone were probed. We find that increasing temperature affects neutral and charged polydots differently, where neutral polydots exhibit a transition above which their structure becomes dynamic and they unravel. The dependence of the transition temperature on the surface to volume ratio of these polydots is much stronger than what has previously been observed in polymeric thin films. Charged polydots become dynamic enabling migration of the ionizable groups toward the particle interface, while retaining the overall particle shape.

More Details

Effect of Chain Length Dispersity on the Mobility of Entangled Polymers

Physical Review Letters

Peters, Brandon L.; Salerno, K.M.; Ge, Ting; Perahia, Dvora; Grest, Gary S.

While nearly all theoretical and computational studies of entangled polymer melts have focused on uniform samples, polymer synthesis routes always result in some dispersity, albeit narrow, of distribution of molecular weights (Crossed D signM=Mw/Mn∼1.02-1.04). Here, the effects of dispersity on chain mobility are studied for entangled, disperse melts using a coarse-grained model for polyethylene. Polymer melts with chain lengths set to follow a Schulz-Zimm distribution for the same average Mw=36 kg/mol with Crossed D signM=1.0 to 1.16, were studied for times of 600-800 μs using molecular dynamics simulations. This time frame is longer than the time required to reach the diffusive regime. We find that dispersity in this range does not affect the entanglement time or tube diameter. However, while there is negligible difference in the average mobility of chains for the uniform distribution Crossed D signM=1.0 and Crossed D signM=1.02, the shortest chains move significantly faster than the longest ones offering a constraint release pathway for the melts for larger Crossed D signM.

More Details

Stratification in Drying Films Containing Bidisperse Mixtures of Nanoparticles

Langmuir

Tang, Yanfei; Grest, Gary S.; Cheng, Shengfeng

Large scale molecular dynamics simulations for bidisperse nanoparticle suspensions with an explicit solvent are used to investigate the effects of evaporation rates and volume fractions on the nanoparticle distribution during drying. Our results show that "small-on-top" stratification can occur when Pesøs ≳ c with c ∼ 1, where Pes is the Péclet number and øs is the volume fraction of the smaller particles. This threshold of Pesøs for "small-on-top" is larger by a factor of ∼α2 than the prediction of the model treating solvent as an implicit viscous background, where α is the size ratio between the large and small particles. Our simulations further show that when the evaporation rate of the solvent is reduced, the "small-on-top" stratification can be enhanced, which is not predicted by existing theories. This unexpected behavior is explained with thermophoresis associated with a positive gradient of solvent density caused by evaporative cooling at the liquid/vapor interface. For ultrafast evaporation the gradient is large and drives the nanoparticles toward the liquid/vapor interface. This phoretic effect is stronger for larger nanoparticles, and consequently the "small-on-top" stratification becomes more distinct when the evaporation rate is slower (but not too slow such that a uniform distribution of nanoparticles in the drying film is produced), as thermophoresis that favors larger particles on the top is mitigated. A similar effect can lead to "large-on-top" stratification for Pesøs above the threshold when Pes is large but øs is small. Our results reveal the importance of including the solvent explicitly when modeling evaporation-induced particle separation and organization and point to the important role of density gradients brought about by ultrafast evaporation.

More Details

Nanorheology of Entangled Polymer Melts

Physical Review Letters

Ge, Ting; Rubinstein, Michael; Grest, Gary S.

We use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function GGSE(t) from the mean square displacement of NPs. GGSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of GGSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in GGSE(t) emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, GGSE(t) approaches G(t) of the ring melt with no entanglement plateau.

More Details

Ordering nanoparticles with polymer brushes

Journal of Chemical Physics

Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a single layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. An interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.

More Details
Results 51–75 of 265
Results 51–75 of 265