Publications

Results 26–38 of 38

Search results

Jump to search filters

The insect brain as a model system for low power electronics and edge processing applications

Proceedings - 2019 IEEE Space Computing Conference, SCC 2019

Yanguas-Gil, Angel; Mane, Anil; Elam, Jeffrey W.; Wang, Felix W.; Severa, William M.; Daram, Anurag R.; Kudithipudi, Dhireesha

The insect brain is a great model system for low power electronics: Insects carry out multisensory integration and are able to change the way the process information, learn, and adapt to changes in their environment with a very limited power budget. This context-dependent processing allows them to implement multiple functionalities within the same network, as well as to minimize power consumption by having context-dependent gains in their first layers of input processing. The combination of low power consumption, adaptability and online learning, and robustness makes them particularly appealing for a number of space applications, from rovers and probes to satellites, all having to deal with the progressive degradation of their capabilities in remote environments. In this work, we explore architectures inspired in the insect brain capable of context-dependent processing and learning. Starting from algorithms, we have explored three different implementations: A spiking implementation in a neuromorphic chip, a custom implementation in an FPGA, and finally hybrid analog/digital implementations based on cross-bar arrays. For the latter, we found that the development of novel resistive materials is crucial in order to enhance the energy efficiency of analog devices while maintaining an adequate footprint. Metal-oxide nanocomposite materials, fabricated using ALD with processes compatible with semiconductor processing, are promising candidates to fill in that role.

More Details

Acquisition and representation of spatio-temporal signals in polychronizing spiking neural networks

ACM International Conference Proceeding Series

Wang, Felix W.; Severa, William M.; Rothganger, Fredrick R.

The ability of an intelligent agent to process complex signals such as those found in audio or video depends heavily on the nature of the internal representation of the relevant information. This work explores the mechanisms underlying this process by investigating theories inspired by the function of the neocortex. In particular, we focus on the phenomenon of polychronization, which describes the self-organization in a spiking neural network resulting from the interplay between network structure, driven spiking activity, and synaptic plasticity. What emerges are groups of neurons that exhibit reproducible, time-locked patterns of spiking activity. We propose that this representation is well suited to spatio-temporal signal processing, as it naturally resembles patterns found in real-world signals. We explore the computational properties of this approach and demonstrate the ability of a simple polychronizing network to learn different spatio-temporal signals.

More Details

Sparse coding for N-gram feature extraction and training for file fragment classification

IEEE Transactions on Information Forensics and Security

Wang, Felix W.; Quach, Tu-Thach Q.; Wheeler, Jason W.; Aimone, James B.; James, Conrad D.

File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features, such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used to reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers, such as support vector machines over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.

More Details

A spike-Timing neuromorphic architecture

2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings

Hill, Aaron J.; Donaldson, Jonathon W.; Rothganger, Fredrick R.; Vineyard, Craig M.; Follett, David R.; Follett, Pamela L.; Smith, Michael R.; Verzi, Stephen J.; Severa, William M.; Wang, Felix W.; Aimone, James B.; Naegle, John H.; James, Conrad D.

Unlike general purpose computer architectures that are comprised of complex processor cores and sequential computation, the brain is innately parallel and contains highly complex connections between computational units (neurons). Key to the architecture of the brain is a functionality enabled by the combined effect of spiking communication and sparse connectivity with unique variable efficacies and temporal latencies. Utilizing these neuroscience principles, we have developed the Spiking Temporal Processing Unit (STPU) architecture which is well-suited for areas such as pattern recognition and natural language processing. In this paper, we formally describe the STPU, implement the STPU on a field programmable gate array, and show measured performance data.

More Details
Results 26–38 of 38
Results 26–38 of 38