Publications

Results 51–100 of 181

Search results

Jump to search filters

Phased-array sources based on nonlinear metamaterial nanocavities

Nature Communications

Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

More Details

Intensity- and Temperature-Dependent Carrier Recombination in InAs/InAs1-x S bx Type-II Superlattices

Physical Review Applied

Olson, Benjamin V.; Kadlec, Emil A.; Kim, Jin K.; Klem, John F.; Hawkins, Samuel D.; Shaner, Eric A.; Flatte, M.E.

Time-resolved measurements of carrier recombination are reported for a midwave infrared InAs/InAs0.66Sb0.34 type-II superlattice (T2SL) as a function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limits the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg1-xCdxTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. These results illustrate the potential for InAs/InAs1-xSbx T2SLs as absorbers in infrared photodetectors.

More Details

Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors

Applied Physics Letters

Zuo, Daniel; Liu, Runyu; Wasserman, Daniel; He, Zhao Y.; Liu, Shi; Zhang, Yong H.; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.

We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures, we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 200 ns, with a vertical diffusivity of 3 × 10-2 cm2/s. We also report on the device's optical response characteristics at 78 K.

More Details

Active Control of Nitride Plasmonic Dispersion in the Far Infrared

Shaner, Eric A.; Dyer, Gregory C.; Seng, William F.; Bethke, Donald; Grine, Albert; Baca, Albert G.; Allerman, A.A.

We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

More Details

GaSb-based infrared detectors utilizing InAsPSb absorbers

Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics

Klem, John F.; Hawkins, Samuel D.; Kim, Jin K.; Leonhardt, Darin; Shaner, Eric A.; Fortune, Torben; Keeler, Gordon A.

InPSb and InAsPSb have been investigated for use as absorber materials in GaSb-based n-type/barrier/n-type (nBn) detectors with cutoff wavelengths shorter than 4.2 μm. The growth temperature window for high-quality InPSb lattice-matched to GaSb by molecular beam epitaxy is approximately 440-460 °C. InPSb films with thicknesses greater than approximately 1 μm or films grown outside this temperature window have high densities of large defects, with films grown at lower temperatures exhibiting evidence of significant phase separation. In contrast, InAsPSb films can be grown with excellent surface morphologies and no apparent phase separation over a wide temperature range. InAsPSb samples with low-temperature photoluminescence between 3.0 and 3.4 μm and lattice mismatch of less than 1 × 10-3 have been grown, although both photoluminescence and x-ray diffraction data exhibit peak splitting indicative of compositional nonuniformity. AlAsSb-barrier nBn detectors with InPSb and InAsPSb absorbers have been fabricated. At 160 K, InPSb-absorber devices have a photocurrent responsivity edge at approximately 2.8 μm and a dark current of approximately 1.4 × 10-7 A/cm2, and InAsPSb devices with responsivity edges of 3.1-3.2 μm have a dark current of 2.3 × 10-8 A/cm2. Both InPSb and InAsPSb devices require significant reverse bias for full photocurrent collection at low temperature, suggesting the existence of an undesirable valence band energy discontinuity. The temperature dependence of dark current indicates that it is dominated by a mechanism other than generation in the undepleted absorber region. © 2013 American Vacuum Society.

More Details
Results 51–100 of 181
Results 51–100 of 181