Performance Portable Assembly For Plasma Fluid Equations
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM Journal on Scientific Computing
Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess-Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxation procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. We present convergence and timing results for a two-dimensional, steady-state test problem.
SIAM Journal on Scientific Computing
This paper describes the design of Teko, an object-oriented C++ library for implementing advanced block preconditioners. Mathematical design criteria that elucidate the needs of block preconditioning libraries and techniques are explained and shown to motivate the structure of Teko. For instance, a principal design choice was for Teko to strongly reflect the mathematical statement of the preconditioners to reduce development burden and permit focus on the numerics. Additional mechanisms are explained that provide a pathway to developing an optimized production capable block preconditioning capability with Teko. Finally, Teko is demonstrated on fluid flow and magnetohydrodynamics applications. In addition to highlighting the features of the Teko library, these new results illustrate the effectiveness of recent preconditioning developments applied to advanced discretization approaches.
ECS Transactions
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. To facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. The model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device is determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.
Abstract not provided.
Abstract not provided.
We study a time-parallel approach to solving quadratic optimization problems with linear time-dependent partial differential equation (PDE) constraints. These problems arise in formulations of optimal control, optimal design and inverse problems that are governed by parabolic PDE models. They may also arise as subproblems in algorithms for the solution of optimization problems with nonlinear time-dependent PDE constraints, e.g., in sequential quadratic programming methods. We apply a piecewise linear finite element discretization in space to the PDE constraint, followed by the Crank-Nicolson discretization in time. The objective function is discretized using finite elements in space and the trapezoidal rule in time. At this point in the discretization, auxiliary state variables are introduced at each discrete time interval, with the goal to enable: (i) a decoupling in time; and (ii) a fixed-point iteration to recover the solution of the discrete optimality system. The fixed-point iterative schemes can be used either as preconditioners for Krylov subspace methods or as smoothers for multigrid (in time) schemes. We present promising numerical results for both use cases.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
New large eddy simulation (LES) turbulence models for incompressible magnetohydrodynamics (MHD) derived from the variational multiscale (VMS) formulation for finite element simulations are introduced. The new models include the variational multiscale formulation, a residual-based eddy viscosity model, and a mixed model that combines both of these component models. Each model contains terms that are proportional to the residual of the incompressible MHD equations and is therefore numerically consistent. Moreover, each model is also dynamic, in that its effect vanishes when this residual is small. The new models are tested on the decaying MHD Taylor Green vortex at low and high Reynolds numbers. The evaluation of the models is based on comparisons with available data from direct numerical simulations (DNS) of the time evolution of energies as well as energy spectra at various discrete times. A numerical study, on a sequence of meshes, is presented that demonstrates that the large eddy simulation approaches the DNS solution for these quantities with spatial mesh refinement.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The emergence of high-concurrency architectures offering unprecedented performance has brought many high-performance partial differential equation (PDE) discretization codes to the precipice of a major refactor. To help address this challenge a workshop titled "Algorithms and Abstractions for Assembly in PDE Codes" was held in the Computer Science Research Institute at Sandia National Laboratories on May 12th-14th, 2014. This document summarizes the goals of the workshop and the results of the presentations and subsequent discussions.
Abstract not provided.
Abstract not provided.
SIAM Journal on Scientific Computing
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM Journal on Numerical Analysis
In this paper we introduce an approach that augments least-squares finite element formulations with user-specified quantities-of-interest. The method incorporates the quantity-ofinterest into the least-squares functional and inherits the global approximation properties of the standard formulation as well as increased resolution of the quantity-of-interest. We establish theoretical properties such as optimality and enhanced convergence under a set of general assumptions. Central to the approach is that it offers an element-level estimate of the error in the quantity-ofinterest. As a result, we introduce an adaptive approach that yields efficient, adaptively refined approximations. Several numerical experiments for a range of situations are presented to support the theory and highlight the effectiveness of our methodology. Notably, the results show that the new approach is effective at improving the accuracy per total computational cost.
This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02, completed March, 31, 2012, THM.CFD.P5.01 completed June 30, 2012 and THM.CFD.P5.01 completed on October 31, 2012.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Existing discretizations for stochastic PDEs, based on a tensor product between the deter ministic basis and the stochastic basis, treat the required resolution of uncertainty as uniform across the physical domain. However, solutions to many PDEs of interest exhibit spatially localized features that may result in uncertainty being severely over or under-resolved by existing discretizations. In this report, we explore the mechanics and accuracy of using a spatially varying stochastic expansion. This is achieved through an adaptive refinement algorithm where simple error estimates are used to independently drive refinement of the stochastic basis at each point in the physical domain. Results are presented comparing the accuracy of the adaptive techinque to the accuracy achieved using uniform refinement.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant of a data-centric verification technique. We provide a brief overview of each technique and then we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical results for steady-state Navier Stokes and SARANS approximations. 3
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in SIAM Journal on Scientific Computing.
Abstract not provided.
Journal of Scientific Computing
In this article, we develop goal-oriented error indicators to drive adaptive refinement algorithms for the Poisson-Boltzmann equation. Empirical results for the solvation free energy linear functional demonstrate that goal-oriented indicators are not sufficient on their own to lead to a superior refinement algorithm. To remedy this, we propose a problem-specific marking strategy using the solvation free energy computed from the solution of the linear regularized Poisson-Boltzmann equation. The convergence of the solvation free energy using this marking strategy, combined with goal-oriented refinement, compares favorably to adaptive methods using an energy-based error indicator. Due to the use of adaptive mesh refinement, it is critical to use multilevel preconditioning in order to maintain optimal computational complexity. We use variants of the classical multigrid method, which can be viewed as generalizations of the hierarchical basis multigrid and Bramble-Pasciak-Xu (BPX) preconditioners. © 2011 Springer Science+Business Media (outside the USA).
Abstract not provided.