Publications

Results 26–50 of 147

Search results

Jump to search filters

Salt International Collaborations FY2021 Update

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Laros, James H.; Stein, Emily S.; Gross, Michael B.

This report summarizes the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-20SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and model comparison (DECOVALEX). Lastly, the report summarizes a newly developed working group on the development of scenarios as part of the performance assessment development process, and the activities related to the Nuclear Energy Agency (NEA) Salt club and the US/German Workshop on Repository Research, Design and Operations.

More Details

Disposal Concepts for a High-Temperature Repository in Shale

Stein, Emily S.; Bryan, Charles R.; Dobson, David C.; Hardin, Ernest H.; Jove Colon, Carlos F.; Lopez, Carlos M.; Matteo, Edward N.; Mohanty, Sitakanta N.; Pendleton, Martha W.; Laros, James H.; Prouty, Jeralyn L.; Sassani, David C.; Wang, Yifeng; Rutqvist, Jonny; Zheng, Liange; Sauer, Kirsten; Caporuscio, Florie; Howard, Robert; Adeniyi, Abiodun; Joseph, Robby

Disposal of large, heat-generating waste packages containing the equivalent of 21 pressurized water reactor (PWR) assemblies or more is among the disposal concepts under investigation for a future repository for spent nuclear fuel (SNF) in the United States. Without a long (>200 years) surface storage period, disposal of 21-PWR or larger waste packages (especially if they contain high-burnup fuel) would result in in-drift and near-field temperatures considerably higher than considered in previous generic reference cases that assume either 4-PWR or 12-PWR waste packages (Jové Colón et al. 2014; Mariner et al. 2015; 2017). Sevougian et al. (2019c) identified high-temperature process understanding as a key research and development (R&D) area for the Spent Fuel and Waste Science and Technology (SFWST) Campaign. A two-day workshop in February 2020 brought together campaign scientists with expertise in geology, geochemistry, geomechanics, engineered barriers, waste forms, and corrosion processes to begin integrated development of a high-temperature reference case for disposal of SNF in a mined repository in a shale host rock. Building on the progress made in the workshop, the study team further explored the concepts and processes needed to form the basis for a high-temperature shale repository reference case. The results are described in this report and summarized..

More Details

Advances in GDSA Framework Development and Process Model Integration

Mariner, Paul M.; Nole, Michael A.; Basurto, Eduardo B.; Berg, Timothy M.; Chang, Kyung W.; Debusschere, Bert D.; Eckert, Aubrey C.; Ebeida, Mohamed S.; Gross, Michael B.; Hammond, Glenn; Harvey, Jacob H.; Jordan, Spencer H.; Kuhlman, Kristopher L.; LaForce, Tara; Leone, Rosemary C.; McLendon, William C.; Mills, Melissa M.; Park, Heeho D.; Laros, James H.; Laros, James H.; Seidl, Daniel T.; David, Sevougian; Stein, Emily S.; Swiler, Laura P.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2020 advances of the Geologic Disposal Safety Assessment (GDSA) Framework and PFLOTRAN development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of disposal options and generic sites. The capability is a framework called GDSA Framework that employs high-performance computing (HPC) capable codes PFLOTRAN and Dakota.

More Details

GDSA Repository Systems Analysis Investigations (FY2020)

LaForce, Tara; Chang, Kyung W.; Laros, James H.; Lowry, Thomas S.; Basurto, Eduardo B.; Jayne, Richard S.; Brooks, Dusty M.; Jordan, Spencer H.; Stein, Emily S.; Leone, Rosemary C.; Nole, Michael A.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2020 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework

Swiler, Laura P.; Basurto, Eduardo B.; Brooks, Dusty M.; Eckert, Aubrey C.; Mariner, Paul M.; Portone, Teresa P.; Stein, Emily S.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST ''Geologic Disposal Safety Assessment'' (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, ''GDSA Framework'', for evaluating disposal system performance for nuclear waste in geologic media. ''GDSA Framework'' is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign. This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-20SN01030403) level 3 milestone — ''Advances in Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework'' (M3SF-20SN010304032). It presents high level objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY20, and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA capability of ''GDSA Framework''. This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: the GDSA Framework Development work package (SF- 2051\101030404), the GDSA Repository Systems Analysis work package (SF-2051\101030405), and the GDSA PFLOTRAN Development work package (SF-20SN01030406). This report builds on developments reported in previous ''GDSA Framework'' milestones, particularly M2SF- 19SNO1030403.

More Details

International Collaborations on Radioactive Waste Disposal in Salt (FY20)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Laros, James H.; Stein, Emily S.; Gross, Michael B.

This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).

More Details
Results 26–50 of 147
Results 26–50 of 147