Publications

Results 76–100 of 113

Search results

Jump to search filters

A comparison of WEC control strategies

Coe, Ryan G.; Bull, Diana L.; Bacelli, Giorgio B.; Wilson, David G.; Korde, Umesh A.; Robinett, Rush D.; Abdelkhalik, Ossama

The operation of Wave Energy Converter (WEC) devices can pose many challenging problems to the Water Power Community. A key research question is how to significantly improve the performance of these WEC devices through improving the control system design. This report summarizes an effort to analyze and improve the performance of WEC through the design and implementation of control systems. Controllers were selected to span the WEC control design space with the aim of building a more comprehensive understanding of different controller capabilities and requirements. To design and evaluate these control strategies, a model scale test-bed WEC was designed for both numerical and experimental testing (see Section 1.1). Seven control strategies have been developed and applied on a numerical model of the selected WEC. This model is capable of performing at a range of levels, spanning from a fully-linear realization to varying levels of nonlinearity. The details of this model and its ongoing development are described in Section 1.2.

More Details

An improved understanding of the natural resonances of moonpools contained within floating rigid-bodies: Theory and application to oscillating water column devices

Ocean Engineering

Bull, Diana L.

The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometries that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.

More Details

Nonlinear time-domain performance model for a wave energy converter in three dimensions

2014 Oceans - St. John's, OCEANS 2014

Coe, Ryan G.; Bull, Diana L.

A nonlinear three-dimensional time-domain performance model has been developed for a floating axisymmetric point absorbing WEC. This model employs a set of linear partial differential equations, in the form of a state-space model, to replace the convolution integrals needed to solve for radiation reaction. Linear time-domain results are verified against predictions from a frequency-domain model. Nonlinear timedomain predictions are compared back to frequency-domain and linear time-domain predictions to show the effects of some linearization assumptions. A simple resistive control strategy is applied throughout these scenarios.

More Details

Sensitivity of a wave energy converter dynamics model to nonlinear hydrostatic models

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Coe, Ryan G.; Bull, Diana L.

A three dimensional time-domain model, based on Cummins equation, has been developed for an axisymmetric point absorbing wave energy converter (WEC) with an irregular cross section. This model incorporates a number of nonlinearities to accurately account for the dynamics of the device: hydrostatic restoring, motion constraints, saturation of the powertake-off force, and kinematic nonlinearities. Here, an interpolation model of the hydrostatic restoring reaction is developed and compared with a surface integral based method. The effects of these nonlinear hydrostatic models on device dynamics are explored by comparing predictions against those of a linear model. For the studied WEC, the interpolation model offers a large improvement over a linear model and is roughly two orders-of-magnitude less computationally expensive than the surface integral based method.

More Details

Design of a physical point-absorbing WEC model on which multiple control strategies will be tested at large scale in the MASK basin

Proceedings of the International Offshore and Polar Engineering Conference

Bull, Diana L.; Coe, Ryan G.; Monda, Mark; Dullea, Kevin; Bacelli, Giorgio B.; Patterson, David

A new multi-year effort has been launched by the Department of Energy to validate the extent to which control strategies can increase the power produced by resonant wave energy conversion (WEC) devices. This paper describes the design of a WEC device to be employed by this program in the development and assessment of WEC control strategies. The operational principle of the device was selected to provide a test-bed for control strategies, in which a specific control strategies effectiveness and the parameters on which its effectiveness depends can be empirically determined. Numerical design studies were employed to determine the device geometry, so as to maximize testing opportunities in the Maneuvering and Seakeeping (MASK) Basin at the Naval Surface Warfare Centers David Taylor Model Basin. Details on the physical model including specific components and model fabrication methodologies are presented. Finally the quantities to be measured and the mechanisms of measurement are listed.

More Details

Reference Model 6 (RM6): Oscillating Wave Energy Converter

Bull, Diana L.; Smith, Chris; Jenne, Dale S.; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret E.; Copeland, Robert G.; Jepsen, Richard A.

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

More Details

Experimental Confirmation of Water Column Natural Resonance Migration in a BBDB Device

Bull, Diana L.; Gunawan, Budi G.; Holmes, Brian

Experiments were conducted with a Backward Bent Duct Buoy (BBDB) oscillating water column wave energy conversion device with a scaling factor of 50 at HMRC at University College Cork, Ireland. Results were compared to numerical performance models. This work experimentally verified the migration of the natural resonance location of the water column due to hydrodynamic coupling for a floating non- axisymmetric device without a power conversion chain PCC present. In addition, the experimental results verified the performance model with a PCC of the same non- axisymmetric device when both floating and grounded.

More Details

Mooring Design for the Floating Oscillating Water Column Reference Model

Bull, Diana L.; Brefort, Dorian

To reduce the price of the reference Backward Bent Duct Buoy (BBDB), a study was done analyzing the effects of reducing the mooring line length, and a new mooring design was developed. It was found that the overall length of the mooring lines could be reduced by 1290 meters, allowing a significant price reduction of the system. In this paper, we will first give a description of the model and the storm environment it will be subject to. We will then give a recommendation for the new mooring system, followed by a discussion of the severe weather simulation results, and an analysis of the conservative and aggressive aspects of the design.

More Details

Oscillating water column structural model

Copeland, Robert G.; Bull, Diana L.; Jepsen, Richard A.; Gordon, Margaret E.

An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

More Details

A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study

Bull, Diana L.; Fowler, Matthew; Goupee, Andrew

This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

More Details

Optimization and Annual Average Power Predictions of a Backward Bent Duct Buoy Oscillating Water Column Device Using the Wells Turbine

Smith, Christopher S.; Bull, Diana L.; Willits, Steven M.; Fontaine, Arnold A.

This Technical Report presents work completed by The Applied Research Laboratory at The Pennsylvania State University, in conjunction with Sandia National Labs, on the optimization of the power conversion chain (PCC) design to maximize the Average Annual Electric Power (AAEP) output of an Oscillating Water Column (OWC) device. The design consists of two independent stages. First, the design of a floating OWC, a Backward Bent Duct Buoy (BBDB), and second the design of the PCC. The pneumatic power output of the BBDB in random waves is optimized through the use of a hydrodynamically coupled, linear, frequency-domain, performance model that links the oscillating structure to internal air-pressure fluctuations. The PCC optimization is centered on the selection and sizing of a Wells Turbine and electric power generation equipment. The optimization of the PCC involves the following variables: the type of Wells Turbine (fixed or variable pitched, with and without guide vanes), the radius of the turbine, the optimal vent pressure, the sizing of the power electronics, and number of turbines. Also included in this Technical Report are further details on how rotor thrust and torque are estimated, along with further details on the type of variable frequency drive selected.

More Details

Hydrodynamic module coupling in the offshore wind energy simulation (OWENS) toolkit

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Fowler, Matthew J.; Goupee, Andrew J.; Owens, Brian; Hurtado, John; Alves, Marco; Bull, Diana L.; Griffith, Daniel G.

When considering the future of offshore wind energy, developing cost effective methods of harnessing the offshore wind resource represents a significant challenge which must be overcome to make offshore wind a viable option. As the majority of the capital investment in offshore wind is in the form of infrastructure and operation and maintenance costs, reducing these expenditures could greatly reduce the cost of energy (COE) for an offshore wind project. Sandia National Laboratory and its partners (TU Delft, University of Maine, Iowa State, and TPI Composites) believe that vertical axis wind turbines (VAWTs) offer multiple advantages over other rotor configurations considering this new COE breakdown. The unique arrangement of a VAWT allows the heavy generator and related components to be located at the base of the tower as opposed to the top, as is typical of a horizontal axis wind turbine (HAWT). This configuration lowers the topside CG which reduces the platform stability requirements, leading to smaller and cheaper platforms. Additionally this locates high maintenance systems close to the ocean surface thus increasing maintainability. To support this project and the general wind research community, the Offshore Wind ENergy Simulation (OWENS) toolkit is being developed in conjunction with Texas A&M as an open source, modular aero-elastic analysis code with the capability to analyze floating VAWTS. The OWENS toolkit aims to establish a robust and flexible finite element framework and VAWT mesh generation utility, coupled with a modular interface that allows users to integrate easily with existing codes, such as aerodynamic and hydrodynamic codes.

More Details
Results 76–100 of 113
Results 76–100 of 113