Publications

Results 76–100 of 118

Search results

Jump to search filters

A comparison of WEC control strategies

Coe, Ryan G.; Bull, Diana L.; Bacelli, Giorgio B.; Wilson, David G.; Korde, Umesh A.; Robinett, Rush D.; Abdelkhalik, Ossama

The operation of Wave Energy Converter (WEC) devices can pose many challenging problems to the Water Power Community. A key research question is how to significantly improve the performance of these WEC devices through improving the control system design. This report summarizes an effort to analyze and improve the performance of WEC through the design and implementation of control systems. Controllers were selected to span the WEC control design space with the aim of building a more comprehensive understanding of different controller capabilities and requirements. To design and evaluate these control strategies, a model scale test-bed WEC was designed for both numerical and experimental testing (see Section 1.1). Seven control strategies have been developed and applied on a numerical model of the selected WEC. This model is capable of performing at a range of levels, spanning from a fully-linear realization to varying levels of nonlinearity. The details of this model and its ongoing development are described in Section 1.2.

More Details

Final Technical Report: Distributed Controls for High Penetrations of Renewables

Byrne, Raymond H.; Neely, Jason C.; Rashkin, Lee; Roberson, Dakota R.; Wilson, David G.

The goal of this effort was to apply four potential control analysis/design approaches to the design of distributed grid control systems to address the impact of latency and communications uncertainty with high penetrations of photovoltaic (PV) generation. The four techniques considered were: optimal fixed structure control; Nyquist stability criterion; vector Lyapunov analysis; and Hamiltonian design methods. A reduced order model of the Western Electricity Coordinating Council (WECC) developed for the Matlab Power Systems Toolbox (PST) was employed for the study, as well as representative smaller systems (e.g., a two-area, three-area, and four-area power system). Excellent results were obtained with the optimal fixed structure approach, and the methodology we developed was published in a journal article. This approach is promising because it offers a method for designing optimal control systems with the feedback signals available from Phasor Measurement Unit (PMU) data as opposed to full state feedback or the design of an observer. The Nyquist approach inherently handles time delay and incorporates performance guarantees (e.g., gain and phase margin). We developed a technique that works for moderate sized systems, but the approach does not scale well to extremely large system because of computational complexity. The vector Lyapunov approach was applied to a two area model to demonstrate the utility for modeling communications uncertainty. Application to large power systems requires a method to automatically expand/contract the state space and partition the system so that communications uncertainty can be considered. The Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) design methodology was selected to investigate grid systems for energy storage requirements to support high penetration of variable or stochastic generation (such as wind and PV) and loads. This method was applied to several small system models.

More Details

Enabling Secure Scalable Microgrids with High Penetration Renewables

Wilson, David G.; Glover, Steven F.; Betty, Rita B.

Laboratory Directed Research and Design (LDRD) originating technologies are being developed to address challenges inherent to highly stochastic energy sources and loads, to conceivably satisfy the electrical energy needs of national/international power systems. The Enabling Secure, Scalable Microgrids with High Penetration Renewables Grand Challenge LDRD (FY11-FY13) aimed to develop a novel intelligent grid architecture, Secure Scalable Microgrid (SSM), based on closed loop controls and an agent-based architecture supporting intelligent power flow control. The approach was to enable self-healing, self-adapting, self-organizing architectures and allow a trade-off between storage in the grid versus information flow to control generation sources, power distribution, and where necessary, loads. L

More Details

Hamiltonian control design for DC microgrids with stochastic sources and loads with applications

2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014

Wilson, David G.; Neely, Jason C.; Cook, Marvin A.; Glover, Steven F.; Young, Joseph; Robinett, Rush D.

To achieve high performance operation of micro-grids that contain stochastic sources and loads is a challenge that will impact cost and complexity. Developing alternative methods for controlling and analyzing these systems will provide insight into tradeoffs that can be made during the design phase. This paper presents a design methodology, based on Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) [1] for a hierarchical control scheme that regulates renewable energy sources and energy storage in a DC micro-grid. Recent literature has indicated that there exists a trade-off in information and power flow and that intelligent, coordinated control of power flow in a microgrid system can modify energy storage hardware requirements. Two scenarios are considered; i) simple two stochastic source with variable load renewable DC Microgrid example and ii) a three zone electric ship with DC Microgrid and varying pulse load profiles. © 2014 IEEE.

More Details

Transient stability and performance based on nonlinear power flow control design of wind turbines

SPEEDAM 2012 - 21st International Symposium on Power Electronics, Electrical Drives, Automation and Motion

Williams, Joseph W.; Wilson, David G.; Robinett, R.D.

In this paper, 1 the equations are formulated to model the dynamic behavior of a wind turbine coupled to the electric grid through a Unified Power Flow Controller (UPFC). This concept is demonstrated in order to treat wind plants more as a controllable energy source rather than a negative load, which is the current trend among renewable energy systems. The results of this research include the determination of the required performance of a proposed Flexible AC Transmission System (FACTS)/storage device, such as a UPFC, to enable the maximum power output of a wind turbine while meeting the constraints of the bulk electric system. The UPFC is required to operate as both a generator and load (energy storage) on the power system in this design. An illustrative example demonstrates this concept applied to a UPFC with a 1MW fixed speed wind turbine. The wind turbine is operated with multiple wind profiles for below-rated wind power conditions. The wind turbine is connected in series through a UPFC to the infinite bus. Numerical simulation cases are reviewed that best demonstrate the stability and performance of a UPFC as applied to a renewable energy system. © 2012 IEEE.

More Details
Results 76–100 of 118
Results 76–100 of 118