Publications

Results 226–250 of 315

Search results

Jump to search filters

Total x-ray power improvement on recent wire array experiments on the Z machine

Jones, Michael J.; Ampleford, David A.; Cuneo, M.E.; Jennings, Christopher A.; Jones, Brent M.; Lopez, Mike R.; Rochau, G.A.; Savage, Mark E.

Recent experiments on the refurbished Z-machine were conducted using large diameter stainless steel arrays which produced x-ray powers of 260 TW. Follow-up experiments were then conducted utilizing tungsten wires with approximately the same total mass with the hypothesis that the total x-ray power would increase. On the large diameter tungsten experiments, the x-ray power averaged over 300 TW and the total x-ray energy was greater than 2MJ. Different analysis techniques for inferring the x-ray power will be described in detail.

More Details

2D rad-MHD model assessment of designs for multiple-shell gas nozzles for Z

Jones, Brent M.; Coverdale, Christine A.; Ampleford, David A.; Jennings, Christopher A.; Cuneo, M.E.

AASC is designing multiple-shell gas puff loads for Z. Here we assess the influence of the loads initial gas distribution on its K-shell yield performance. Emphasis is placed on designing an optimal central jet initial gas distribution, since it is believed to have a controlling effect on pinch stability, pinch conditions, and radiation physics. We are looking at distributions that optimize total Ar K-shell emission and high energy (>10 KeV) continuum radiation. This investigation is performed with the Mach2 MHD code with non-LTE kinetics and ray trace based radiation transport.

More Details

Spectroscopic study of z-pinch stagnation on Z

Rochau, G.A.; Bailey, James E.; Coverdale, Christine A.; Ampleford, David A.; Cuneo, M.E.; Jones, Brent M.; Jennings, Christopher A.; Yu, Edmund Y.; Hansen, Stephanie B.

Fast z-pinches provide intense 1-10 keV photon energy radiation sources. Here, we analyze time-, space-, and spectrally-resolved {approx}2 keV K-shell emissions from Al (5% Mg) wire array implosions on Sandia's Z machine pulsed power driver. The stagnating plasma is modeled as three separate radial zones, and collisional-radiative modeling with radiation transport calculations are used to constrain the temperatures and densities in these regions, accounting for K-shell line opacity and Doppler effects. We discuss plasma conditions and dynamics at the onset of stagnation, and compare inferences from the atomic modeling to three-dimensional magneto-hydrodynamic simulations.

More Details

Diagnosing plasma conditions in a copper wire array shot on Z : spatially-averaged analysis compared to inferred properties of individual bright spots

Jones, Brent M.; Ampleford, David A.; Coverdale, Christine A.

Recent copper wire array shots on Z, when spectroscopically analyzed on a spatially-averaged basis, appear to have achieved ion densities near 10{sup 21} cm{sup -3}, electron temperatures of 1.25 keV, and K-shell radiating participation of 70-85% of the load mass. However, pinhole images of the shots reveal considerable structure, including several well-defined intensely radiating 'bright spots', which may be due to enhanced density, temperature, or some combination of the two. We have analyzed these individual spots on selected shots, using line-outs of their spectrum and inferred powers based on their images. We compare the properties of these spots (are they dense, hot, or both?), and examine their effect on inferring the radiating mass.

More Details
Results 226–250 of 315
Results 226–250 of 315