Publications

Results 26–50 of 52

Search results

Jump to search filters

Tailoring fleet for cold hypersonic flows

AIAA Scitech 2020 Forum

Zhang, Yibin Z.; Beresh, Steven J.; Casper, Katya M.; Richardson, Daniel R.; Soehnel, Melissa M.; Spillers, Russell W.

Bench-top tests are conducted to characterize Femtosecond Laser Electronic Excitation Tagging (FLEET) in static low pressure (35 mTorr-760 Torr) conditions, and to measure the acoustic disturbance caused by the resulting filament as a function of tagging wavelength and energy. The FLEET line thickness as a function of pressure and delay is described by a simple diffusion model. Initial FLEET measurements in a Mach 8 flow show that gate times of ≥ 1µs can produce visible smearing of the FLEET emission and challenge the traditional Gaussian fitting methods used to find the line center. To minimize flow perturbations and uncertainty of the final line position, several recommendations are offered: using third harmonic FLEET at 267 nm for superior signal levels with lower energy deposition than both 800 nm and 400 nm FLEET, and short camera delays and exposure times to reduce fitting uncertainty. This guidance is implemented in a Mach 8 test condition and results are presented.

More Details

Hydrogen thermometry in aluminized propellant burns by hybrid fs/ps coherent anti-stokes raman scattering

AIAA Scitech 2020 Forum

Retter, Jonathan E.; Richardson, Daniel R.; Kearney, S.P.

A hybrid femtosecond/picosecond CARS instrument probed the Q-branch of molecular hydrogen in the multiphase plume of an aluminized solid propellant burn. A single 50 fs regenerative amplifier pumped an OPA and etalon, providing the Stokes and probe pulses respectively. The spectra were recorded at 1 kHz and fit to synthetic spectra to infer the gas rotational temperature. Recorded spectra required dynamic background corrections due to the intense emission of the propellant plume. Two different days of propellant burns were studied, with the lessons learned from nonresonant background issues with the first test applied to the second. For the second attempt, three burns were examined, with mean temperatures differing only by 30 K with a combined mean of 2574 K.

More Details

Tomographic time-resolved laser-induced incandescence

AIAA Scitech 2020 Forum

Munz, Elise D.; Halls, Benjamin R.; Richardson, Daniel R.; Guildenbecher, Daniel R.; Cenker, Emre; Paciaroni, Megan E.

Three ultra-high-speed, 10 MHz, cameras imaged the time-resolved decay of laser-induced incandescence (LII) from soot in a turbulent non-premixed ethylene jet flame. Cameras were equipped with a stereoscope allowing each CMOS array to capture two separate views of the flame. The resulting six views were reconstructed into a volumetric soot decay series using commercially available DaVis tomographic software by LaVision. Primary soot particle sizes were estimated from the decay time history on a per voxel basis by comparing measured signals to an LII model. Experimentally quantified soot particle sizes agree with existing predictions and previous measurements.

More Details

Laser-Diagnostic Platform for Multi-Parameter Hypersonics Measurements

Kearney, S.P.; Retter, Jonathan E.; Richardson, Daniel R.; Koll, Matthew K.

We have investigated the utility of femtosecond/picosecond (fs/ps) coherent anti-Stokes Raman scattering(CARS)for simultaneous measurement of temperature, pressure, and velocity in hypersonic flows. Experiments were conducted in underexpanded jets of air and molecular nitrogen to assess CARS diagnostic performance in terms of signal level scaling, measurement precision, and dynamic range. Pure-rotational CARS of the Raman S branch was applied for simultaneous measurement of temperature and pressure. Thermometry was performed by fitting CARS spectra acquired under nearly collision-free conditions by introducing a picosecond CARS probe pulse at zero delay from the femtosecond pump. Pressure could be subsequently obtained by from a second CARS spectral acquisition with a picosecond probe introduced at time delay to sample molecular collisions. CARS velocimetry was attempted by monitoring the Doppler shift of the N2 vibrational, Q-branch spectrum, with both direct spectral resolution and optical heterodyne detection schemes. Doppler shifts from the sub-I-km/s air jet flow proved too small to measure with this approach, prompting us to turn to femtosecond laser electronic excitation tagging (FLEET) for reliable single-laser-shot velocimetry and CARS temperature/pressure measurement. Scaling of the CARS signal level to very low pressure and temperature conditions expected in the Sandia hypersonic wind tunnel (HWI) was performed. CARS measurements of temperature in HWT appear to be very feasible, while prospects for HWT pressure measurements are reasonable.

More Details

Hypersonic wake measurements behind a slender cone using fleet velocimetry

AIAA Aviation 2019 Forum

Zhang, Yibin Z.; Richardson, Daniel R.; Beresh, Steven J.; Casper, Katya M.; Soehnel, Melissa M.; Henfling, John F.; Spillers, Russell W.

Femtosecond Laser Electronic Excitation Tagging (FLEET) is used to measure velocity flowfields in the wake of a sharp 7◦ half-angle cone in nitrogen at Mach 8, over freestream Reynolds numbers from 4.3∗106 /m to 13.8∗106 /m. Flow tagging reveals expected wake features such as the separation shear layer and two-dimensional velocity components. Frequency-tripled FLEET has a longer lifetime and is more energy efficient by tenfold compared to 800 nm FLEET. Additionally, FLEET lines written with 267 nm are three times longer and 25% thinner than that written with 800 nm at a 1 µs delay. Two gated detection systems are compared. While the PIMAX 3 ICCD offers variable gating and fewer imaging artifacts than a LaVision IRO coupled to a Photron SA-Z, its slow readout speed renders it ineffective for capturing hypersonic velocity fluctuations. FLEET can be detected to 25 µs following excitation within 10 mm downstream of the model base, but delays greater than 4 µs have deteriorated signal-to-noise and line fit uncertainties greater than 10%. In a hypersonic nitrogen flow, exposures of just several hundred nanoseconds are long enough to produce saturated signals and/or increase the line thickness, thereby adding to measurement uncertainty. Velocity calculated between the first two delays offer the lowest uncertainty (less than 3% of the mean velocity).

More Details

Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging

Optics Letters

Mazumdar, Yi C.; Cenker, Emre; Richardson, Daniel R.; Kearney, S.P.; Halls, Benjamin R.; Skeen, Scott A.; Shaddix, Christopher R.; Guildenbecher, Daniel R.

Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.

More Details

Phase conjugate digital inline holography (PCDIH)

Optics Letters

Guildenbecher, Daniel R.; Hoffmeister, Kathryn N.G.; Kunzler, William M.; Richardson, Daniel R.; Kearney, Sean P.

We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

More Details
Results 26–50 of 52
Results 26–50 of 52