Publications

Results 101–125 of 271

Search results

Jump to search filters

Adaptive Self-Tuning of Signal Detection Parameters

Draelos, Timothy J.; Peterson, Matthew G.; Knox, Hunter A.; Lawry, Benjamin J.; Philips-Alonge, Kristin; Ziegler, Abra; Chael, Eric; Young, Christopher J.; Faust, Aleksandra

The quality of automatic detections from sensor networks depends on a large number of data processing parameters that interact in complex ways. The largely manual process of identifying effective parameters is painstaking and does not guarantee that the resulting controls are the optimal configuration settings, yet achieving superior automatic detection of events is closely related to these parameters. We present an automated sensor tuning (AST) system that tunes effective parameter settings for each sensor detector to the current state of the environment by leveraging cooperation within a neighborhood of sensors. After a stabilization period, the AST algorithm can adapt in near real-time to changing conditions and automatically self-tune a signal detector to identify (detect) only signals from events of interest. The overall goal is to reduce the number of missed legitimate event detections and the number of false event detections. Our current work focuses on reducing false signal detections early in the seismic signal processing pipeline, which leads to fewer false events and has a significant impact on reducing analyst time and effort. Applicable both for existing sensor performance boosting and new sensor deployment, this system provides an important new method to automatically tune complex remote sensing systems. Systems tuned in this way will achieve better performance than is currently possible by manual tuning, and with much less time and effort devoted to the tuning process. With ground truth on detections from a seismic sensor network monitoring the Mount Erebus Volcano in Antarctica, we show that AST increases the probability of detection while decreasing false alarms.

More Details

Rapid and robust cross-correlation-based seismic signal identification using an approximate nearest neighbor method

Bulletin of the Seismological Society of America

Tibi, Rigobert T.; Young, Christopher J.; Gonzales, Antonio G.; Ballard, Sanford B.; Encarnacao, Andre V.

The matched filtering technique that uses the cross correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an approximate nearest neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation. Our method begins with a projection into a reduced dimensionality space, based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors for a query waveform is accomplished by iteratively comparing it with the neighbors of its immediate neighbors. We used the approach to search for matches to each of ∼2300 analyst-reviewed signal detections reported in May 2010 for the International Monitoring System station MKAR. The template library in this case consists of a data set of more than 200,000 analyst-reviewed signal detections for the same station from February 2002 to July 2016 (excluding May 2010). Of these signal detections, 73% are teleseismic first P and 17% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer show that the proposed ANN approach performs a search of the large template libraries about 25 times faster than the standard full linear search and achieves recall rates greater than 80%, with the recall rate increasing for higher correlation thresholds.

More Details

SALSA3D: A tomographic model of compressional wave slowness in the earth’s mantle for improved travel-time prediction and travel-time prediction uncertainty

Bulletin of the Seismological Society of America

Ballard, Sanford B.; Hipp, James R.; Begnaud, Michael L.; Young, Christopher J.; Encarnacao, Andre V.; Chael, Eric P.; Phillips, W.S.

The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. Motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source to receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. The computed pattern of uncertainty differs significantly from that of 1D distance-dependent traveltime uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.

More Details
Results 101–125 of 271
Results 101–125 of 271