Proxy App Usecases at Sandia
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.
Abstract not provided.
Abstract not provided.
This report outlines the research, development, and support requirements for the Advanced Simulation and Computing (ASC ) Advanced Technology, Development, and Mitigation (ATDM) Performance Portability (a.k.a., Kokkos) project for 2015 - 2019 . The research and development (R&D) goal for Kokkos (v2) has been to create and demonstrate a thread - parallel programming model a nd standard C++ library - based implementation that enables performance portability across diverse manycore architectures such as multicore CPU, Intel Xeon Phi, and NVIDIA Kepler GPU. This R&D goal has been achieved for algorithms that use data parallel pat terns including parallel - for, parallel - reduce, and parallel - scan. Current R&D is focusing on hierarchical parallel patterns such as a directed acyclic graph (DAG) of asynchronous tasks where each task contain s nested data parallel algorithms. This five y ear plan includes R&D required to f ully and performance portably exploit thread parallelism across current and anticipated next generation platforms (NGP). The Kokkos library is being evaluated by many projects exploring algorithm s and code design for NGP. Some production libraries and applications such as Trilinos and LAMMPS have already committed to Kokkos as their foundation for manycore parallelism an d performance portability. These five year requirements includes support required for current and antic ipated ASC projects to be effective and productive in their use of Kokkos on NGP. The greatest risk to the success of Kokkos and ASC projects relying upon Kokkos is a lack of staffing resources to support Kokkos to the degree needed by these ASC projects. This support includes up - to - date tutorials, documentation, multi - platform (hardware and software stack) testing, minor feature enhancements, thread - scalable algorithm consulting, and managing collaborative R&D.
International Journal of High Performance Computing Applications
Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on the characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.
The emergence of high-concurrency architectures offering unprecedented performance has brought many high-performance partial differential equation (PDE) discretization codes to the precipice of a major refactor. To help address this challenge a workshop titled "Algorithms and Abstractions for Assembly in PDE Codes" was held in the Computer Science Research Institute at Sandia National Laboratories on May 12th-14th, 2014. This document summarizes the goals of the workshop and the results of the presentations and subsequent discussions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel computers and advanced processor ar- chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic interactions on massively parallel computers.
Abstract not provided.
Journal of Parallel and Distributed Computing
The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diverse manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.