The Kokkos OpenMPTarget Backend: Implementation and Lessons Learned
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACM Transactions on Mathematical Software
Automatic differentiation (AD) is a well-known technique for evaluating analytic derivatives of calculations implemented on a computer, with numerous software tools available for incorporating AD technology into complex applications. However, a growing challenge for AD is the efficient differentiation of parallel computations implemented on emerging manycore computing architectures such as multicore CPUs, GPUs, and accelerators as these devices become more pervasive. In this work, we explore forward mode, operator overloading-based differentiation of C++ codes on these architectures using the widely available Sacado AD software package. In particular, we leverage Kokkos, a C++ tool providing APIs for implementing parallel computations that is portable to a wide variety of emerging architectures. We describe the challenges that arise when differentiating code for these architectures using Kokkos, and two approaches for overcoming them that ensure optimal memory access patterns as well as expose additional dimensions of fine-grained parallelism in the derivative calculation. We describe the results of several computational experiments that demonstrate the performance of the approach on a few contemporary CPU and GPU architectures. We then conclude with applications of these techniques to the simulation of discretized systems of partial differential equations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - 2022 IEEE 18th International Conference on e-Science, eScience 2022
To keep pace with the demand for innovation through scientific computing, modern scientific software development is increasingly reliant upon a rich and diverse ecosystem of software libraries and toolchains. Research software engineers (RSEs) responsible for that infrastructure perform highly integrative work, acting as a bridge between the hardware, the needs of researchers, and the software layers situated between them; relatively little, however, has been written about the role played by RSEs in that work and what support they need to thrive. To that end, we present a two-part report on the development of half-precision floating point support in the Kokkos Ecosystem. Half-precision computation is a promising strategy for increasing performance in numerical computing and is particularly attractive for emerging application areas (e.g., machine learning), but developing practicable, portable, and user-friendly abstractions is a nontrivial task. In the first half of the paper, we conduct an engineering study on the technical implementation of the Kokkos half-precision scalar feature and showcase experimental results; in the second half, we offer an experience report on the challenges and lessons learned during feature development by the first author. We hope our study provides a holistic view on scientific library development and surfaces opportunities for future studies into effective strategies for RSEs engaged in such work.
Abstract not provided.
Abstract not provided.
Computer Physics Communications
Since the classical molecular dynamics simulator LAMMPS was released as an open source code in 2004, it has become a widely-used tool for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum. Reasons for its popularity are that it provides a wide variety of particle interaction models for different materials, that it runs on any platform from a single CPU core to the largest supercomputers with accelerators, and that it gives users control over simulation details, either via the input script or by adding code for new interatomic potentials, constraints, diagnostics, or other features needed for their models. As a result, hundreds of people have contributed new capabilities to LAMMPS and it has grown from fifty thousand lines of code in 2004 to a million lines today. In this paper several of the fundamental algorithms used in LAMMPS are described along with the design strategies which have made it flexible for both users and developers. We also highlight some capabilities recently added to the code which were enabled by this flexibility, including dynamic load balancing, on-the-fly visualization, magnetic spin dynamics models, and quantum-accuracy machine learning interatomic potentials.
Computing in Science and Engineering
State-of-the-art engineering and science codes have grown in complexity dramatically over the last two decades. Application teams have adopted more sophisticated development strategies, leveraging third party libraries, deploying comprehensive testing, and using advanced debugging and profiling tools. In today's environment of diverse hardware platforms, these applications also desire performance portability-avoiding the need to duplicate work for various platforms. The Kokkos EcoSystem provides that portable software stack. Based on the Kokkos Core Programming Model, the EcoSystem provides math libraries, interoperability capabilities with Python and Fortran, and Tools for analyzing, debugging, and optimizing applications. In this article, we overview the components, discuss some specific use cases, and highlight how codesigning these components enables a more developer friendly experience.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Parallel and Distributed Systems
As the push towards exascale hardware has increased the diversity of system architectures, performance portability has become a critical aspect for scientific software. We describe the Kokkos Performance Portable Programming Model that allows developers to write single source applications for diverse high performance computing architectures. Kokkos provides key abstractions for both the compute and memory hierarchy of modern hardware. Here, we describe the novel abstractions that have been added to Kokkos recently such as hierarchical parallelism, containers, task graphs, and arbitrary-sized atomic operations. We demonstrate the performance of these new features with reproducible benchmarks on CPUs and GPUs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.