OMVPE Growth of Al-Rich AlGaN Alloys for Power Electronics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physica Status Solidi (A) Applications and Materials Science
Due to the ultra-wide bandgap of Al-rich AlGaN, up to 5.8 eV for the structures in this study, obtaining low resistance ohmic contacts is inherently difficult to achieve. A comparative study of three different fabrication schemes is presented for obtaining ohmic contacts to an Al-rich AlGaN channel. Schottky-like behavior was observed for several different planar metallization stacks (and anneal temperatures), in addition to a dry-etch recess metallization contact scheme on Al0.85Ga0.15N/Al0.66Ga0.34N. However, a dry etch recess followed by n+-GaN regrowth fabrication process is reported as a means to obtain lower contact resistivity ohmic contacts on a Al0.85Ga0.15N/Al0.66Ga0.34N heterostructure. Specific contact resistivity of 5 × 10−3 Ω cm2 was achieved after annealing Ti/Al/Ni/Au metallization.
Abstract not provided.
ECS Journal of Solid State Science and Technology
AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ∼3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel AlxGa1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the −50◦C to +200◦C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest −1.3 V threshold voltage was measured. A very large Ion/Ioff current ratio, greater than 108 was demonstrated over the entire temperature range, indicating that off-state leakage is below the measurement limit even at 200◦C. Combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.