The Sandia Ion-Electron-Optical ''Radiation Microscope''
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
To design more radiation tolerant Integrated Circuits (ICs), it is essential to create and test accurate models of ionizing radiation induced charge collection dynamics within microcircuits. A new technique, Diffusion Time Resolved Ion Beam Induced Charge Collection (DTRIBICC), is proposed to measure the average arrival time of the diffused charge at the junction. Specially designed stripe-like junctions were experimentally studied using a 12 MeV carbon microbeam with a spot size of 1 {micro}m. The relative arrival time of ion-generated charge is measured along with the charge collection using a multiple parameter data acquisition system. The results show the importance of the diffused charge collection by junctions, which is especially significant in accounting for Multiple Bit Upset (MBUs) in digital devices.
Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.
A technique has been developed for producing calibrated metal hydride films for use in the measurement of high-energy (5--15 MeV) particle reaction cross sections for hydrogen and helium isotopes on hydrogen isotopes. Absolute concentrations of various hydrogen isotopes in the film is expected to be determined to better than {+-}2% leading to the capacity of accurately measuring various reaction cross sections. Hydrogen isotope concentrations from near 100% to 5% can be made accurately and reproducibly. This is accomplished with the use of high accuracy pressure measurements coupled with high accuracy mass spectrometric measurements of each constituent partial pressure of the gas mixture during loading of the metal occluder films. Various techniques are used to verify the amount of metal present as well as the amount of hydrogen isotopes; high energy ion scattering analysis, PV measurements before, during and after loading, and thermal desorption/mass spectrometry measurements. The most appropriate metal to use for the occluder film appears to be titanium but other occluder metals are also being considered. Calibrated gas ratio samples, previously prepared, are used for the loading gas. Deviations from this calibrated gas ratio are measured using mass spectrometry during and after the loading process thereby determining the loading of the various hydrogen isotopes. These techniques are discussed and pertinent issues presented.
The electronic transport properties of Cadmium Zinc Telluride (CZT) determine the charge collection efficiency (i.e. the signal quality) of CZT detectors. These properties vary on both macroscopic and microscopic scale and depend on the presence of impurities and defects introduced during the crystal growth. Ion Beam Induced Charge Collection (IBICC) is a proven method to measure the charge collection efficiency. Using an ion microbeam, the charge collection efficiency can be mapped with submicron resolution, and the map of electronic properties (such as drift length) can be calculated from the measurement. A more sophisticated version of IBICC, the Time Resolved IBICC (TRIBICC) allows them to determine the mobility and the life time of the charge carriers by recording and analyzing the transient waveform of the detector signal. Furthermore, lateral IBICC and TRIBICC can provide information how the charge collection efficiency depends on the depth where the charge carriers are generated. This allows one to deduce information on the distribution of the electric field and transport properties of the charge carriers along the detector axis. IBICC and TRIBICC were used at the Sandia microbeam facility to image electronic properties of several CZT detectors. From the lateral TRIBICC measurement the electron and hole drift length profiles were calculated.
This paper presents ion beam induced charge collection (IBICC) contrast images showing regions of differing charge collection efficiency within optoelectronic modulator devices. The experiments were carried out at the Sandia nuclear microprobe using 18 MeV carbon and 2 MeV helium ions. Lines of varying densities are observed to run along the different {l_brace}110{r_brace} directions which correlate with misfit dislocations within the 392nm thick strained layer superlattice quantum well of the modulator structure. Independent cross-sectional TEM studies and the electrical properties of the devices under investigation suggest the presence of threading dislocations in the active device region at a density of {approximately} 10{sup 6} cm{sup {minus}2}. However, no clear evidence of threading dislocations was observed in the IBICC images as they are possibly masked by the strong contrast of the misfit dislocations. Charge carrier transport within the modulator is used to explain the observed contrast. The different signal to noise levels and rates of damage of the incident ions are assessed.
Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
An acousto-optic (AO) deflector composed of PbMoO4 was exposed to 4 MeV protons while operating under Bragg angle conditions. An ion beam in air of 1 mm width was directed normal to the crystal face and laser beam. Between exposures, the approximately 13 mm × 8.5 mm AO deflector was mechanically translated in two dimensions in front of the fixed ion beam. The AO diffraction efficiency was mapped and was observed to change as a function of ion beam location and dose rate. These effects are attributed to the induced change in the temperature distribution of the crystal, which changed the sonic velocity and refractive index. Similar effects were observed when the ion beam was directed at the acoustic transducer.
This paper presents ion beam induced charge collection (IBICC) contrast images showing regions of differing charge collection efficiency within optoelectronic modulator devices. The experiments were carried out at the Sandia nuclear microprobe using 18 MeV carbon and 2 MeV helium ions. Lines of varying densities are observed to run along the different (110) directions which correlate with misfit dislocations within the 392nm thick strained-layer superlattice quantum well of the modulator structure. Independent cross-sectional TEM studies and the electrical properties of the devices under investigation suggest the presence of threading dislocations in the active device region at a density of {approximately}10{sup 6} cm{sup {minus}2}. However, no clear evidence of threading dislocations was observed in the IBICC images as they are possibly masked by the strong contrast of the misfit dislocations. Charge carrier transport within the modulator is used to explain the observed contrast. The different signal to noise levels and rates of damage of the incident ions are assessed.
The authors have demonstrated the utility of microbeam - Rutherford Back Scattering ({mu} RBS) in spatially resolved studies of operational plasma effects on the interior surfaces of plasma flat panel displays manufactured by Photonics Imaging. The experiments were performed at the Sandia Nuclear microprobe using a 2.8 MeV He beam with an average beam spot size of less than 8{mu}m. The interior surface of the top panes of the flat panels is composed of approximately 800 nm of MgO on top of a 2000nm thick PbO layer. {mu}-RBS of sample panels operated under varying conditions measured changes in the surface MgO film thickness due to plasma erosion and redeposition as accurately as {+-}1.5 nm. The high accuracy in the MgO thickness measurement was achieved by inferring the MgO thickness from the shift of the Pb front edge in the RBS spectrum. An estimate for the thickness accuracy as a function of the acquired statistics is presented. The surface of the flat panels` bottom panes is also comprised of MgO on top of PbO. However, troughs {approximately}100 {mu}m wide by 10{mu}m deep were partially filled with phosphor and cover the entire width of the surface. This leaves only 100pm long sections of MgO within the trough exposed. Using {mu}-RBS, the authors were able to analyze the surface composition of these regions.
Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), proton induced x-ray emission (PIXE) and nuclear reaction analysis (NRA) are among the most commonly used, or traditional, ion beam analysis (IBA) techniques. In this review, several adaptations of these IBA techniques are described where either the approach used in the analysis or the application area is clearly non-traditional or unusual. These analyses and/or applications are summarized in this paper.
Journal of Nuclear Materials
Helium removal experiments were conducted in TEXTOR with a small helium self-pumping module located in a modified ALT-I limiter head. The module contained two heated nickel alloy trapping plates, a nickel deposition filament array, a Langmuir probe, flux probe, and thermocouples. The experiment examined plasma helium removal via trapping of helium ions in the deposited nickel surfaces. Such helium removal was successfully observed, with about 10% of the helium in a 10% He/D plasma being removed in a ∼1 s period. The module was found to be compatible with overall tokamak operation with essentially no sputtered nickel entering the core plasma. The temperature rise on the ion-exposed inner trapping plate, during a plasma shot, is consistent with a local sheath potential of ∼3kTe. Post-tokamak test examination of the trapping plates shows helium atom concentrations in the deposited nickel consistent with the observed helium removal, and shows very small D concentrations. © 1992 Elsevier Science Publishers B.V. All rights reserved.
Nuclear Inst. and Methods in Physics Research, B
An entirely new ion beam analysis technique is described: single event upset (SEU) imaging. SEU-imaging utilizes the scanning of a mu-focused MeV ion beam across an integrated circuit. This beam generates both electrons and logic state changes which are monitored by a computer. The data is collected in a way that permits the generation of visual images which depict both the physical appearance of the scanned region (through the ion-induced electron signals) and the areas of the IC which are susceptible to upset (through detection of chip malfunctions). Comparison of these images with the chip design facilitates matching the individual transistor components with the upset-sensitive region. While our initial results with 1 μm resolution ion beams have demonstrated the viability of this new technique in directly identifying the sources of upset in mun-scale integrated circuits, the trend toward submun feature size will necessitate higher-resolution muprobes and improved appearance-imaging systems in future applications of this new technique. © 1992.