Publications

Results 1–25 of 66

Search results

Jump to search filters

Magnetic Methods for Tracking Particle Motions and Temperatures within Opaque Vessels

Nemer, Martin N.; van Bloemen Waanders, Bart G.; Mazumdar, Yi C.; Guba, Oksana G.; Mazumdar, Anirban; Bond, Stephen D.; Brooks, Carlton F.; Roberts, Christine C.; Dodd, Amanda B.; Miller, Stephen S.

A three year LDRD was undertaken to look at the feasibility of using magnetic sensing to determine flows within sealed vessels at high temperatures and pressures. Uniqueness proofs were developed for tracking of single magnetic particles with multiple sensors. Experiments were shown to be able to track up to 3 dipole particles undergoing rigid-body rotational motion. Temperature was wirelessly monitored using magnetic particles in static and predictable motions. Finally high-speed vibrational motion was tracked using magnetic particles. Ideas for future work include using small particles for measuring vorticity and better calibration methods for tracking multiple particles.

More Details

Validation of Heat Transfer, Thermal Decomposition, and Container Pressurization of Polyurethane Foam Using Mean Value and Latin Hypercube Sampling Approaches

Fire Technology

Dodd, Amanda B.; Scott, Sarah N.; Larsen, Marvin E.; Suo-Anttila, Jill M.; Erickson, Ken L.

Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. It can be advantageous to surround objects of interest, such as electronics, with foams in a hermetically sealed container in order to protect them from hostile environments or from accidents such as fire. In fire environments, gas pressure from thermal decomposition of foams can cause mechanical failure of sealed systems. In this work, a detailed uncertainty quantification study of polymeric methylene diisocyanate (PMDI)-polyether-polyol based polyurethane foam is presented and compared to experimental results to assess the validity of a 3-D finite element model of the heat transfer and degradation processes. In this series of experiments, 320 kg/m3 PMDI foam in a 0.2 L sealed steel container is heated to 1,073 K at a rate of 150 K/min. The experiment ends when the can breaches due to the buildup of pressure. The temperature at key location is monitored as well as the internal pressure of the can. Both experimental uncertainty and computational uncertainty are examined and compared. The mean value method (MV) and Latin hypercube sampling (LHS) approach are used to propagate the uncertainty through the model. The results of the both the MV method and the LHS approach show that while the model generally can predict the temperature at given locations in the system, it is less successful at predicting the pressure response. Also, these two approaches for propagating uncertainty agree with each other, the importance of each input parameter on the simulation results is also investigated, showing that for the temperature response the conductivity of the steel container and the effective conductivity of the foam, are the most important parameters. For the pressure response, the activation energy, effective conductivity, and specific heat are most important. The comparison to experiments and the identification of the drivers of uncertainty allow for targeted development of the computational model and for definition of the experiments necessary to improve accuracy.

More Details

Intermediate-scale Fire Performance of Composite Panels under Varying Loads

Brown, Alexander B.; Jernigan, Dann A.; Dodd, Amanda B.

New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aimed at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small-scale. Heterogeneous reactions are often length-scale dependent, and this is thought to be particularly true for composites which exhibit significant microscopic dynamics that can affect macro-scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass-loss, heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its behavior in response to fire-like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later times appear to be independent of the initial structural loading.

More Details

Gas temperature and concentration measurements in the vicinity of a burning/decomposing carbon-epoxy aircraft composite material

Fire and Materials 2015 - 14th International Conference and Exhibition, Proceedings

Kearney, S.P.; Dodd, Amanda B.; Bohlin, Alexis; Kliewer, Christopher J.

We report measurements of temperature and O2/N2 mole-fraction ratio in the vicinity of a burning and decomposing carbon-epoxy composite aircraft material samples exposed to uniform heat fluxes of 48 and 69 kW/m2. Controlled laboratory experiments were conducted with the samples suspended above a cone-type heater and enclosed in an optically accessible chimney. Noninvasive coherent anti-Stokes Raman scattering (CARS) measurements we performed on a single-laser-shot basis. The CARS data were performed with both a traditional point measurement system and with a one-dimensional line imaging scheme that provides single-shot temperature and O2/N2 profiles to reveal the quantitative structure of the temperature and oxygen concentration profiles over the duration of the 30-40 minute duration events. The measured near-surface temperature and oxygen transport are an important factor for exothermic chemistry and oxidation of char materials and the carbon fibers themselves in a fire scenario. These unique laser-diagnostic experiments provide new information on physical/chemical processes in a well-controlled environment which may be useful for the development of heat-and mass-transfer models for the composite fire scenario.

More Details

Addressing Modeling Requirements for Radiation Heat Transfer

Tencer, John T.; Akau, Ronald L.; Dobranich, Dean D.; Brown, Alexander B.; Dodd, Amanda B.; Laros, James H.; Okusanya, Tolulope O.; Phinney, Leslie M.; Pierce, Flint P.

Thermal analysts address a wide variety of applications requiring the simulation of radiation heat transfer phenomena. There are gaps in the currently available modeling capabilities. Addressing these gaps would allow for the consideration of additional physics and increase confidence in simulation predictions. This document outlines a five year plan to address the current and future needs of the analyst community with regards to modeling radiation heat transfer processes. This plan represents a significant multi-year effort that must be supported on an ongoing basis.

More Details
Results 1–25 of 66
Results 1–25 of 66