Publications

Results 1–25 of 262

Search results

Jump to search filters

Tuning the Spin Transition and Carrier Type in Rare-Earth Cobaltates via Compositional Complexity

Advanced Materials

Oh, Sangheon; Brown, Timothy D.; Spataru, Catalin D.; Sugar, Joshua D.; Witman, Matthew D.; Kumar, Suhas; Talin, Albert A.; Fuller, Elliot J.

There is growing interest in material candidates with properties that can be engineered beyond traditional design limits. Compositionally complex oxides (CCO), often called high entropy oxides, are excellent candidates, wherein a lattice site shares more than four cations, forming single-phase solid solutions with unique properties. However, the nature of compositional complexity in dictating properties remains unclear, with characteristics that are difficult to calculate from first principles. Here, compositional complexity is demonstrated as a tunable parameter in a spin-transition oxide semiconductor La1− x(Nd, Sm, Gd, Y)x/4CoO3, by varying the population x of rare earth cations over 0.00≤ x≤ 0.80. Across the series, increasing complexity is revealed to systematically improve crystallinity, increase the amount of electron versus hole carriers, and tune the spin transition temperature and on-off ratio. At high a population (x = 0.8), Seebeck measurements indicate a crossover from hole-majority to electron-majority conduction without the introduction of conventional electron donors, and tunable complexity is proposed as new method to dope semiconductors. First principles calculations combined with angle resolved photoemission reveal an unconventional doping mechanism of lattice distortions leading to asymmetric hole localization over electrons. Thus, tunable complexity is demonstrated as a facile knob to improve crystallinity, tune electronic transitions, and to dope semiconductors beyond traditional means.

More Details

Science Driven Discovery of Nanoparticle Photocatalysts

Talin, Albert A.; Stoffel, Jonathan; Robinson, Donald A.; Horton, Robert D.; Bhandarkar, Austin

Photocatalytic water splitting using suspensions of nanoparticle photocatalysts is a promising route to economically sustainable production of green hydrogen. The principal challenge is to develop photocatalysts with overall solar-to-hydrogen conversion efficiency that exceeds 10 percent. In this project we have developed a new platform for investigating candidate materials for photocatalytic water splitting. Our platform consists of patterned Au electrodes and a Ag/AgCl reference electrode on an insulating substrate onto which we disperse nanoparticle photocatalysts. We then cover the substrate with a thin layer of ionogel containing a protic ionic liquid that dissolves water from the ambient. Using this platform we have demonstrated photoelectrochemical activity mapping for single and small clusters of BiVO4 nanoparticle photocatalysts and correlated these results to their Raman and photoluminescence spectra. The preliminary results suggest a strong correlation for low efficiency nanoparticles, followed by saturation for those with higher activities, indicating that interface reaction or electrolyte transport become the limiting factor. We anticipate that further application of this platform to investigation of candidate photocatalyst materials will provide useful insights into the mechanisms that limit their performance.

More Details

Simultaneous Solid Electrolyte Deposition and Cathode Lithiation for Thin Film Batteries and Lithium Iontronic Devices

ACS Energy Letters

Warecki, Zoey; Ferrari, Victoria C.; Robinson, Donald A.; Sugar, Joshua D.; Lee, Jonathan; Ievlev, Anton V.; Kim, Nam S.; Stewart, David M.; Lee, Sang B.; Albertus, Paul; Rubloff, Gary; Talin, Albert A.

We show that the deposition of the solid-state electrolyte LiPON onto films of V2O5 leads to their uniform lithiation of up to 2.2 Li per V2O5, without affecting the Li concentration in the LiPON and its ionic conductivity. Our results indicate that Li incorporation occurs during LiPON deposition, in contrast to earlier mechanisms proposed to explain postdeposition Li transfer between LiPON and LiCoO2. We use our discovery to demonstrate symmetric thin film batteries with a capacity of >270 mAh/g, at a rate of 20C, and 1600 cycles with only 8.4% loss in capacity. We also show how autolithiation can simplify fabrication of Li iontronic transistors attractive for emerging neuromorphic computing applications. Our discovery that LiPON deposition results in autolithiation of the underlying insertion oxide has the potential to substantially simplify and enhance the fabrication process for thin film solid state Li ion batteries and emerging lithium iontronic neuromorphic computing devices.

More Details

Custom-form iron trifluoride Li-batteries using material extrusion and electrolyte exchanged ionogels

Additive Manufacturing

Cardenas, Jorge A.; Bullivant, John P.; Wygant, Bryan R.; Lapp, Aliya S.; Bell, Nelson S.; Lambert, Timothy N.; Merrill, Laura C.; Talin, Albert A.; Cook, Adam; Allcorn, Eric; Harrison, Katharine L.

Custom-form factor batteries fabricated in non-conventional shapes can maximize the overall energy density of the systems they power, particularly when used in conjunction with energy dense materials (e.g., Li metal anodes and conversion cathodes). Additive manufacturing (AM), and specifically material extrusion (ME), have been shown as effective methods for producing custom-form cell components, particularly electrodes. However, the AM of several promising energy dense materials (conversion electrodes such as iron trifluoride) have yet to be demonstrated or optimized. Furthermore, the integration of multiple AM produced cell components, such as electrodes and separators, along with a custom package remains largely unexplored. In this work, iron trifluoride (FeF3) and ionogel (IG) separators are conformally printed using ME onto non-planar surfaces to enable the fabrication of custom-form Li-FeF3 batteries. To demonstrate printing on non-planar surfaces, cathodes and separators were deposited onto cylindrical rods using a 5-axis ME printer. ME printed FeF3 was shown to have performance commensurate with FeF3 cast using conventional means, both in coin cell and cylindrical rod formats, with capacities exceeding 700 mAh/g on the first cycle and ranging between 600 and 400 mAh/g over the next 50 cycles. Additionally, a ME process for printing polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) based IGs directly onto FeF3 is developed and enabled using an electrolyte exchange process. In coin cells, this process is shown to produce cells with similar capacity to cells built with Celgard separators out to 50 cycles, with the exception that cycling instabilities are observed during cycles 8–20. When using printed and exchanged IGs in a custom cylindrical cell package, 6 stable high-capacity cycles are achieved. Overall, this work demonstrates approaches for producing high-energy-density Li-FeF3 cells in coin and cylindrical rod formats, which are translatable to customized, arbitrary geometries compatible with ME printing and electrolyte exchange.

More Details

Direct Visualization of Charge Migration in Bilayer Tantalum Oxide Films by Multimodal Imaging

Advanced Electronic Materials

Flynn-Hepford, Matthew; Lasseter, John; Kravchenko, Ivan; Randolph, Steven; Keum, Jong; Sumpter, Bobby G.; Jesse, Stephen; Maksymovych, Petro; Talin, Albert A.; Marinella, Matthew J.; Rack, Philip D.; Ievlev, Anton V.; Ovchinnikova, Olga S.

Inspired by biological neuromorphic computing, artificial neural networks based on crossbar arrays of bilayer tantalum oxide memristors have shown to be promising alternatives to conventional complementary metal-oxide-semiconductor (CMOS) architectures. In order to understand the driving mechanism in these oxide systems, tantalum oxide films are resistively switched by conductive atomic force microscopy (C-AFM), and subsequently imaged by kelvin probe force microscopy (KPFM) and spatially resolved time-of-flight secondary ion mass spectrometry (ToF-SIMS). These workflows enable induction and analysis of the resistive switching mechanism as well as control over the resistively switched region of the film. In this work it is shown that the resistive switching mechanism is driven by both current and electric field effects. Reversible oxygen motion is enabled by applying low (<1 V) electric fields, while high electric fields generate irreversible breakdown of the material (>1 V). Fully understanding oxygen motion and electrical effects in bilayer oxide memristor systems is a fundamental step toward the adoption of memristors as a neuromorphic computing technology.

More Details

Interface potentials inside solid-state batteries: Origins and implications

MRS Bulletin

Qi, Yue; Swift, Michael W.; Fuller, Elliot J.; Talin, Albert A.

Interface resistance has become a significant bottleneck for solid-state batteries (SSBs). Most studies of interface resistance have focused on extrinsic mechanisms such as interface reactions and imperfect contact between electrodes and solid electrolytes. Interface potentials are an important intrinsic mechanism that is often ignored. Here, we highlight Kelvin probe force microscopy (KPFM) as a tool to image the local potential at interfaces inside SSBs, examining the existing literature and discussing challenges in interpretation. Drawing analogies with electron transport in metal/semiconductor interfaces, we showcase a formalism that predicts intrinsic ionic resistance based on the properties of the contacting phases, and we emphasize that future battery designs should start from material pairs with low intrinsic resistance. We conclude by outlining future directions in the study of interface potentials through both theory and experiment. Graphic abstract: [Figure not available: see fulltext.]

More Details

Effect of substrate and growth method on vanadium dioxide thin films by RF magnetron sputtering: Vanadium metal oxidation vs reactive sputtering

Journal of Applied Physics

Christensen, A.; Posadas, A.B.; Zutter, Brian T.; Finnegan, Patrick S.; Bhullar, S.; Talin, Albert A.; Demkov, A.A.

Vanadium dioxide (VO2) undergoes a metal-insulator phase transition at ∼70 °C and has attracted substantial interest for potential applications in electronics, including those in neuromorphic computing. The vanadium-oxygen system has a rather complicated phase diagram, and controlling the stoichiometry and the phase of thin films of vanadium oxides is a well-known challenge. We explore the novel combination of two methods of VO2 thin film deposition using off-axis RF magnetron sputtering on (100)- and (111)-oriented yttria-stabilized zirconia (YSZ) substrates: reactive sputtering of vanadium in an oxygen environment and sputtering of vanadium metal followed by oxidation to VO2. Interestingly, the reactive sputtering process on both substrate orientations yields the metastable semiconducting VO2 (B) phase, which is structurally stabilized by the YSZ surface. The metal sputtering and oxidation process on YSZ produces mainly the equilibrium monoclinic (or M1) phase of VO2 that exhibits a metal-insulator transition. Using this method, we obtained thin films of (010)-textured polycrystalline VO2 (M1) that show a metal-insulator transition with an on/off ratio larger than 1000.

More Details

Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materials

International Journal of High Performance Computing Applications

Vetter, Jeffrey S.; Date, Prasanna; Fahim, Farah; Kulkarni, Shruti R.; Liu, Frank; Maksymovych, Petro; Talin, Albert A.; Tallada, Marc G.; Vanna-Iampikul, Pruek; Young, Aaron R.; Brooks, David; Cao, Yu; Gu-Yeon, Wei; Lim, Sung K.; Marinella, Matthew; Sumpter, Bobby; Miniskar, Narasinga R.

The Abisko project aims to develop an energy-efficient spiking neural network (SNN) computing architecture and software system capable of autonomous learning and operation. The SNN architecture explores novel neuromorphic devices that are based on resistive-switching materials, such as memristors and electrochemical RAM. Equally important, Abisko uses a deep codesign approach to pursue this goal by engaging experts from across the entire range of disciplines: materials, devices and circuits, architectures and integration, software, and algorithms. The key objectives of our Abisko project are threefold. First, we are designing an energy-optimized high-performance neuromorphic accelerator based on SNNs. This architecture is being designed as a chiplet that can be deployed in contemporary computer architectures and we are investigating novel neuromorphic materials to improve its design. Second, we are concurrently developing a productive software stack for the neuromorphic accelerator that will also be portable to other architectures, such as field-programmable gate arrays and GPUs. Third, we are creating a new deep codesign methodology and framework for developing clear interfaces, requirements, and metrics between each level of abstraction to enable the system design to be explored and implemented interchangeably with execution, measurement, a model, or simulation. As a motivating application for this codesign effort, we target the use of SNNs for an analog event detector for a high-energy physics sensor.

More Details

Electrochemical-mechanical coupling measurements

Joule

Song, Yueming; Bhargava, Bhuvsmita; Stewart, David M.; Talin, Albert A.; Rubloff, Gary W.; Albertus, Paul

Lithium metal solid-state batteries (LiSSBs) present new challenges in the measurement of material, component, and cell mechanical behaviors and in the measurement and theory of fundamental mechanical-electrochemical (thermodynamics, transport, and kinetics) couplings. Here, we classify the major mechanical and electrochemical-mechanical (ECM) studies underway and provide an overview of major mechanical testing platforms. We emphasize key distinctions among testing platforms, including tip- vs. platen-based sample compression, surface- vs. volume-based analysis, ease of integration with a vacuum or inert atmosphere environment, the ability to control and measure force/displacement over long periods of time, ranges of force and contact area, and others. Among the techniques we review, nanoindentation platforms offer some unique benefits associated with being able to use both tip-based nanoindentation techniques as well as platen-based compression over areas approaching 1 mm2. Sample design is also important: while most efforts are particle-based (i.e., using particles of solid electrolyte and cathode-active materials and densifying them using sintering or pressure), the resulting electrochemical response is from the overall collection of particles present. In contrast, thin-film (<1 μm) solid-state battery materials (e.g., Li, LiPON, LCO) provide well defined and uniform structures well suited for fundamental electrochemical-mechanical studies and offer an important opportunity to drive underlying scientific advances in LiSSB and other areas. We believe there are exciting opportunities to advance the measurement of both mechanical properties and electrochemical-mechanical couplings through the careful and novel co-design of test structures and experimental approaches for LiSSB materials, components, and cells.

More Details

Room-Temperature Pseudo-Solid-State Iron Fluoride Conversion Battery with High Ionic Conductivity

ACS Applied Materials and Interfaces

Lapp, Aliya S.; Merrill, Laura C.; Wygant, Bryan R.; Ashby, David S.; Bhandarkar, Austin; Zhang, Alan C.; Fuller, Elliot J.; Harrison, Katharine L.; Lambert, Timothy N.; Talin, Albert A.

Li-metal batteries (LMBs) employing conversion cathode materials (e.g., FeF3) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density. Pseudo-solid-state ionogel separators harness the energy density and safety advantages of solid-state LMBs, while alleviating key drawbacks (e.g., poor ionic conductivity and high interfacial resistance). In this work, a pseudo-solid-state conversion battery (Li-FeF3) is presented that achieves stable, high rate (1.0 mA cm–2) cycling at room temperature. The batteries described herein contain gel-infiltrated FeF3 cathodes prepared by exchanging the ionic liquid in a polymer ionogel with a localized high-concentration electrolyte (LHCE). The LHCE gel merges the benefits of a flexible separator (e.g., adaptation to conversion-related volume changes) with the excellent chemical stability and high ionic conductivity (~2 mS cm–1 at 25 °C) of an LHCE. The latter property is in contrast to previous solid-state iron fluoride batteries, where poor ionic conductivities necessitated elevated temperatures to realize practical power levels. Importantly, the stable, room-temperature Li-FeF3 cycling performance obtained with the LHCE gel at high current densities paves the way for exploring a range of architectures including flexible, three-dimensional, and custom shape batteries.

More Details

Modifying Ionogel Solid-Electrolytes for Complex Electrochemical Systems

ACS Applied Energy Materials

Ashby, David S.; Cardenas, Jorge A.; Bhandarkar, Austin; Cook, Adam; Talin, Albert A.

The solution processability of ionogel solid electrolytes has recently garnered attention in the Li-ion battery community as a means to address the interface and fabrication issues commonly associated with most solid electrolytes. However, the trapped ionic liquid (ILE) component has hindered the electrochemical performance. Herein, we present a process to tune the properties by replacing the ILE in a silica-based ionogel after fabrication with a liquid component befitting the desired application. Electrochemical cycling under various conditions showcases gels containing different liquid components incorporated into LiFePO4 (LFP)/gel/Li cells: high power (455 W kg-1 at a 1 C discharge) systems using carbonates, low temperatures (-40 °C) using ethers, or high temperatures (100 °C) using ionic liquids. Fabrication of additive-manufactured cells utilizing the exchanged carbonate-based system is demonstrated in a planar LFP/Li4Ti5O12 (LTO) system, where a marked improvement over an ionogel is found in terms of rate capability, capacity, and cycle stability (118 vs 41 mA h g-1 at C/4). This process represents a promising route to create a separator-less cell, potentially in complex architectures, where the electrolyte properties can be facilely tuned to meet the required conditions for a wide range of battery chemistries while maintaining a uniform electrolyte access throughout cast electrodes.

More Details

Proton Tunable Analog Transistor for Low Power Computing

Robinson, Donald A.; Foster, Michael E.; Bennett, Christopher; Bhandarkar, Austin; Fuller, Elliot J.; Stavila, Vitalie; Spataru, Catalin D.; Krishnakumar, Raga; Cole-Filipiak, Neil C.; Schrader, Paul; Ramasesha, Krupa; Allendorf, Mark; Talin, Albert A.

This project was broadly motivated by the need for new hardware that can process information such as images and sounds right at the point of where the information is sensed (e.g. edge computing). The project was further motivated by recent discoveries by group demonstrating that while certain organic polymer blends can be used to fabricate elements of such hardware, the need to mix ionic and electronic conducting phases imposed limits on performance, dimensional scalability and the degree of fundamental understanding of how such devices operated. As an alternative to blended polymers containing distinct ionic and electronic conducting phases, in this LDRD project we have discovered that a family of mixed valence coordination compounds called Prussian blue analogue (PBAs), with an open framework structure and ability to conduct both ionic and electronic charge, can be used for inkjet-printed flexible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. Retention of programmed states is improved by nearly two orders of magnitude compared to the extensively studied organic polymers, thus enabling in-memory compute and avoiding energy costly off-chip access during training. We demonstrate dopamine detection using PBA synapses and biocompatibility with living neurons, evoking prospective application for brain - computer interfacing. By application of electron transfer theory to in-situ spectroscopic probing of intervalence charge transfer, we elucidate a switching mechanism whereby the degree of mixed valency between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory (DFT) .

More Details
Results 1–25 of 262
Results 1–25 of 262