Publications

Results 1–50 of 334

Search results

Jump to search filters

Long-term drift of Si-MOS quantum dots with intentional donor implants

Scientific Reports

Carroll, M.S.; Sarabi, B.; Murray, R.; Zimmerman, Neil M.; Rudolph, Martin

Charge noise can be detrimental to the operation of quantum dot (QD) based semiconductor qubits. We study the low-frequency charge noise by charge offset drift measurements for Si-MOS devices with intentionally implanted donors near the QDs. We show that the MOS system exhibits non-equilibrium drift characteristics, in the form of transients and discrete jumps, that are not dependent on the properties of the donor implants. The equilibrium charge noise indicates a 1/f noise dependence, and a noise strength as low as 1μeV/Hz, comparable to that reported in more model GaAs and Si/SiGe systems (which have also not been implanted). We demonstrate that implanted qubits, therefore, can be fabricated without detrimental effects on long-term drift or 1/f noise for devices with less than 50 implanted donors near the qubit.

More Details

Long-term drift of Si-MOS quantum dots with intentional donor implants

Scientific Reports

Rudolph, Martin; Sarabi, B.; Murray, R.; Carroll, M.S.; Zimmerman, Neil M.

Charge noise can be detrimental to the operation of quantum dot (QD) based semiconductor qubits. We study the low-frequency charge noise by charge offset drift measurements for Si-MOS devices with intentionally implanted donors near the QDs. We show that the MOS system exhibits non-equilibrium drift characteristics, in the form of transients and discrete jumps, that are not dependent on the properties of the donor implants. The equilibrium charge noise indicates a 1/f noise dependence, and a noise strength as low as 1μeV/Hz, comparable to that reported in more model GaAs and Si/SiGe systems (which have also not been implanted). We demonstrate that implanted qubits, therefore, can be fabricated without detrimental effects on long-term drift or 1/f noise for devices with less than 50 implanted donors near the qubit.

More Details

Quantum dots with split enhancement gate tunnel barrier control

Applied Physics Letters

Rochette, S.; Rudolph, Martin; Roy, A.M.; Curry, Matthew; Eyck, G.A.T.; Manginell, Ronald; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M.; Ward, Daniel R.; Lilly, M.P.; Carroll, M.S.

We introduce a silicon metal-oxide-semiconductor quantum dot architecture based on a single polysilicon gate stack. The elementary structure consists of two enhancement gates separated spatially by a gap, one gate forming a reservoir and the other a quantum dot. We demonstrate that, in three devices based on two different versions of this elementary structure, a wide range of tunnel rates is attainable while maintaining single-electron occupation. A characteristic change in the slope of the charge transitions as a function of the reservoir gate voltage, attributed to screening from charges in the reservoir, is observed in all devices and is expected to play a role in the sizable tuning orthogonality of the split enhancement gate structure. The all-silicon process is expected to minimize strain gradients from electrode thermal mismatch, while the single gate layer should avoid issues related to overlayers (e.g., additional dielectric charge noise) and help improve the yield. Finally, reservoir gate control of the tunnel barrier has implications for initialization, manipulation, and readout schemes in multi-quantum dot architectures.

More Details

A silicon metal-oxide-semiconductor electron spin-orbit qubit

Nature Communications

Jock, Ryan M.; Jacobson, Noah T.; Harvey-Collard, Patrick; Mounce, Andrew M.; Srinivasa, Vanita; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald; Wendt, Joel R.; Rudolph, Martin; Pluym, Tammy; Foulk, James W.; Baczewski, Andrew D.; Witzel, Wayne M.; Carroll, M.S.

The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic fieldorientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-Axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T2m, of 1.6 ?s is consistent with 99.95% 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-Axis qubit control, while not increasing noise relative to other material choices.

More Details

Spectroscopy of Multielectrode Tunnel Barriers

Physical Review Applied

Carroll, M.S.; Shirkhorshidian, Amir; Gamble, John K.; Maurer, Leon; Carr, Stephen M.; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Nielsen, Erik N.; Jacobson, Noah T.; Lilly, Michael

Despite their ubiquity in nanoscale electronic devices, the physics of tunnel barriers has not been developed to the extent necessary for the engineering of devices in the few-electron regime. This problem is of urgent interest, as this is the specific regime into which current extreme-scale electronics fall. Here, we propose theoretically and validate experimentally a compact model for multielectrode tunnel barriers, suitable for design-rules-based engineering of tunnel junctions in quantum devices. We perform transport spectroscopy at approximately T=4 K, extracting effective barrier heights and widths for a wide range of biases, using an efficient Landauer-Büttiker tunneling model to perform the analysis. We find that the barrier height shows several regimes of voltage dependence, either linear or approximately exponential. Effects on threshold, such as metal-insulator transition and lateral confinement, are included because they influence parameters that determine barrier height and width (e.g., the Fermi energy and local electric fields). We compare these results to semiclassical solutions of Poisson's equation and find them to agree qualitatively. Finally, this characterization technique is applied to an efficient lateral tunnel barrier design that does not require an electrode directly above the barrier region in order to estimate barrier heights and widths.

More Details

Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices

Physical Review Materials

Bussmann, Ezra; Gamble, John K.; Foulk, James W.; Laroche, D.; Huang, S.H.; Chuang, Y.; Li, J.Y.; Swartzentruber, Brian; Lilly, Michael; Carroll, M.S.; Lu, Tzu M.

As a first step to porting scanning tunneling microscopy methods of atomic-precision fabrication to a strained-Si/SiGe platform, we demonstrate post-growth P atomic-layer doping of SiGe heterostructures. To preserve the substrate structure and elastic state, we use a T≤800 ° C process to prepare clean Si0.86Ge0.14 surfaces suitable for atomic-precision fabrication. P-saturated atomic-layer doping is incorporated and capped with epitaxial Si under a thermal budget compatible with atomic-precision fabrication. Hall measurements at T=0.3 K show that the doped heterostructure has R□=570±30Ω, yielding an electron density ne=2.1±0.1×1014cm-2 and mobility μe=52±3cm2V-1s-1, similar to saturated atomic-layer doping in pure Si and Ge. The magnitude of μe and the complete absence of Shubnikov-de Haas oscillations in magnetotransport measurements indicate that electrons are overwhelmingly localized in the donor layer, and not within a nearby buried Si well. This conclusion is supported by self-consistent Schrödinger-Poisson calculations that predict electron occupation primarily in the donor layer.

More Details

Enhancement-mode two-channel triple quantum dot from an undoped Si/Si0.8Ge0.2 quantum well hetero-structure

Applied Physics Letters

Studenikin, S.A.; Gaudreau, L.; Kataoka, K.; Austing, D.G.; Lu, Tzu M.; Luhman, Dwight R.; Bethke, Donald; Wanke, Michael C.; Lilly, Michael; Carroll, M.S.; Sachrajda, A.S.

Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si0.8Ge0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regions in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.

More Details

High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism

Physical Review. X

Carroll, M.S.; Harvey-Collard, Patrick; Anjou, Martin'; Rudolph, Martin; Jacobson, Noah T.; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Coish, William; Pioro-Ladriere, Michel

The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)–(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. As a result, it further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.

More Details

Silicon Qubits

Library Journal

Carroll, M.S.; Ladd, Thaddeus D.

There are two good reasons to attempt to build quantum bits (qubits) out of silicon. The first is the obvious foundation of classical microelectronics. Although silicon quantum computers would operate in a fundamentally different way from classical computers$-$for example, at cryogenic temperatures$-$still the level of development in material quality, crystal growth, and fabrication methodologies for silicon is unrivaled by any other material in the world. Leveraging even a small fraction of the worldwide investment in silicon for qubit development could potentially put silicon-based qubits far ahead of other solid-state alternatives. The second, less obvious reason for choosing silicon is the remarkably clean magnetic environment witnessed by spins in highly purified and isotopically enriched silicon material. Fortuitously, 95.3% of the naturally occurring isotopes of Si nuclei (28Si and 30Si) are spin-0. These nuclei therefore have a “closed shell” of nuclear moments, providing no external magnetic field whatsoever. Add to this the possibility of intrinsic silicon with part-per-billion chemical quality and the system is remarkably close to “vacuum” with respect to magnetic noise properties.

More Details

Silicon qubits

Encyclopedia of Modern Optics

Carroll, M.S.

Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

More Details

Coherent coupling between a quantum dot and a donor in silicon

Nature Communications

Carroll, M.S.; Harvey-Collard, Patrick; Jacobson, Noah T.; Rudolph, Martin; Wendt, Joel R.; Pluym, Tammy; Foulk, James W.; Pioro-Ladriere, Michel; Dominguez, Jason

Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show that the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.

More Details

Ion implantation for deterministic single atom devices

Review of Scientific Instruments

Bielejec, Edward S.; Pacheco, Jose L.; Perry, Daniel L.; Wendt, Joel R.; Ten Eyck, Gregory A.; Manginell, Ronald; Pluym, Tammy; Luhman, Dwight R.; Lilly, Michael; Carroll, M.S.

We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

More Details

Heterogeneous nucleation of pits via step pinning during Si(100) homoepitaxy

New Journal of Physics

Bussmann, Ezra; Yitamben, Esmeralda; Swartzentruber, Brian; Misra, Shashank; Simonson, Robert J.; Carroll, M.S.

Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leaks into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step-pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits' atomistic origins and growth dynamics. Here, we give a model for heterogeneous nucleation of pits by preferential adsorption of Å-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.

More Details

Probing low noise at the MOS interface with a spin-orbit qubit

arXiv.org

Jock, Ryan M.; Jacobson, Noah T.; Harvey-Collard, Patrick; Mounce, Andrew M.; Srinivasa, Vanita; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald; Wendt, Joel R.; Rudolph, Martin; Pluym, Tammy; Foulk, James W.; Baczewski, Andrew D.; Witzel, Wayne M.; Carroll, M.S.

The silicon metal-oxide-semiconductor (MOS) material system is technologically important for the implementation of electron spin-based quantum information technologies. Researchers predict the need for an integrated platform in order to implement useful computation, and decades of advancements in silicon microelectronics fabrication lends itself to this challenge. However, fundamental concerns have been raised about the MOS interface (e.g. trap noise, variations in electron g-factor and practical implementation of multi-QDs). Furthermore, two-axis control of silicon qubits has, to date, required the integration of non-ideal components (e.g. microwave strip-lines, micro-magnets, triple quantum dots, or introduction of donor atoms). In this paper, we introduce a spin-orbit (SO) driven singlet- triplet (ST) qubit in silicon, demonstrating all-electrical two-axis control that requires no additional integrated elements and exhibits charge noise properties equivalent to other more model, but less commercially mature, semiconductor systems. We demonstrate the ability to tune an intrinsic spin-orbit interface effect, which is consistent with Rashba and Dresselhaus contributions that are remarkably strong for a low spin-orbit material such as silicon. The qubit maintains the advantages of using isotopically enriched silicon for producing a quiet magnetic environment, measuring spin dephasing times of 1.6 μs using 99.95% 28Si epitaxy for the qubit, comparable to results from other isotopically enhanced silicon ST qubit systems. This work, therefore, demonstrates that the interface inherently provides properties for two-axis control, and the technologically important MOS interface does not add additional detrimental qubit noise. isotopically enhanced silicon ST qubit systems

More Details

Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

Physical Review Applied

Carroll, M.S.; Rochette, Sophie; Rudolph, Martin; Roy, A.M.; Curry, Matthew; Ten Eyck, Gregory A.; Manginell, Ronald; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M.; Ward, Daniel R.; Lilly, Michael; Pioro-Ladriere, Michel

We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down to the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.

More Details
Results 1–50 of 334
Results 1–50 of 334