Publications

Results 251–275 of 395

Search results

Jump to search filters

Optimization of a solid-state electron spin qubit using gate set tomography

New Journal of Physics

Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin J.; Rudinger, Kenneth M.; Laros, James H.; Nielsen, Erik N.; Laucht, Arne; Simmons, Stephanie; Kalra, Rachpon; Morello, Andrea

State of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate set tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereas GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of , an improvement on the previous value of . Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.

More Details

Standardizing Power Monitoring and Control at Exascale

Computer

Grant, Ryan E.; Levenhagen, Michael J.; Olivier, Stephen L.; DeBonis, David D.; Laros, James H.; Laros, James H.

Power API - the result of collaboration among national laboratories, universities, and major vendors - provides a range of standardized power management functions, from application-level control and measurement to facility-level accounting, including real-time and historical statistics gathering. Support is already available for Intel and AMD CPUs and standalone measurement devices.

More Details

Dynamic Multi-Sensor Multi-Mission Optimal Planning Tool

Valicka, Christopher G.; Rowe, Stephen R.; Zou, Simon Z.; Mitchell, Scott A.; Irelan, William R.; Pollard, Eric L.; Garcia, Deanna G.; Hackebeil, Gabriel A.; Staid, Andrea S.; Laros, James H.; Watson, Jean-Paul W.; Hart, William E.; Rathinam, Sivakumar; Ntaimo, Lewis

Remote sensing systems have firmly established a role in providing immense value to commercial industry, scientific exploration, and national security. Continued maturation of sensing technology has reduced the cost of deploying highly-capable sensors while at the same time increased reliance on the information these sensors can provide. The demand for time on these sensors is unlikely to diminish. Coordination of next-generation sensor systems, larger constellations of satellites, unmanned aerial vehicles, ground telescopes, etc. is prohibitively complex for existing heuristics-based scheduling techniques. The project was a two-year collaboration spanning multiple Sandia centers and included a partnership with Texas A&M University. We have developed algorithms and software for collection scheduling, remote sensor field-of-view pointing models, and bandwidth-constrained prioritization of sensor data. Our approach followed best practices from the operations research and computational geometry communities. These models provide several advantages over state of the art techniques. In particular, our approach is more flexible compared to heuristics that tightly couple models and solution techniques. First, our mixed-integer linear models afford a rigorous analysis so that sensor planners can quantitatively describe a schedule relative to the best possible. Optimal or near-optimal schedules can be produced with commercial solvers in operational run-times. These models can be modified and extended to incorporate different scheduling and resource constraints and objective function definitions. Further, we have extended these models to proactively schedule sensors under weather and ad hoc collection uncertainty. This approach stands in contrast to existing deterministic schedulers which assume a single future weather or ad hoc collection scenario. The field-of-view pointing algorithm produces a mosaic with the fewest number of images required to fully cover a region of interest. The bandwidth-constrained algorithms find the highest priority information that can be transmitted. All of these are based on mixed-integer linear programs so that, in the future, collection scheduling, field-of-view, and bandwidth prioritization can be combined into a single problem. Experiments conducted using the developed models, commercial solvers, and benchmark datasets have demonstrated that proactively scheduling against uncertainty regularly and significantly outperforms deterministic schedulers.

More Details

Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

Applied Physics Letters

Lu, Tzu-Ming L.; Laros, James H.; Muller, Richard P.; Nielsen, Erik N.; Bethke, Donald T.; Ten Eyck, Gregory A.; Pluym, Tammy P.; Wendt, J.R.; Dominguez, Jason J.; Lilly, Michael L.; Carroll, Malcolm; Wanke, Michael W.

Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. The device uses only a single metal-gate layer, greatly simplifying device design and fabrication.

More Details

Overcoming challenges in scalable power monitoring with the power API

Proceedings - 2016 IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS 2016

Grant, Ryan E.; Levenhagen, Michael J.; Olivier, Stephen L.; DeBonis, David D.; Laros, James H.; Laros, James H.

Power will be a first-class operating constraint for Exascale computing. In order to manage power consumption of systems, measurement and control methods need to be developed. While several approaches have been developed by hardware manufacturers, they are vendor-specific and in some cases implementation-specific interfaces. Integrating all of the individual device level measurement and control functionality in a single system is a difficult task that requires system specific code. Sandia National Laboratories, in collaboration with many industry and academic partners, has developed a Power API specification, consisting of a broad range of interfaces spanning from low-level hardware to platform management and accounting. In order for many of the interfaces to be useful, especially at large scale, measurement data must be collected and control directives must be distributed in a scalable manner. This paper details the challenges of providing large scale power measurement and control and the scalable collection and control distribution architecture that is being integrated into the Power API reference implementation.

More Details

A cross-enclave composition mechanism for exascale system software

Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers, ROSS 2016 - In conjunction with HPDC 2016

Evans, Noah; Laros, James H.; Kocoloski, Brian; Lange, John; Lang, Michael; Bridges, Patrick G.

As supercomputers move to exascale, the number of cores per node continues to increase, but the I/O bandwidth between nodes is increasing more slowly. This leads to computational power outstripping I/O bandwidth. This growth, in turn, encourages moving as much of an HPC workflow as possible onto the node in order to minimize data movement. One particular method of application composition, enclaves, co-locates different operating systems and runtimes on the same node where they communicate by in situ communication mechanisms. In this work, we describe a mechanism for communicating between composed applications. We implement a mechanism using Copy onWrite cooperating with XEMEM shared memory to provide consistent, implicitly unsynchronized communication across enclaves. We then evaluate this mechanism using a composed application and analytics between the Kitten Lightweight Kernel and Linux on top of the Hobbes Operating System and Runtime. These results show a 3% overhead compared to an application running in isolation, demonstrating the viability of this approach.

More Details

A cross-enclave composition mechanism for exascale system software

Proceedings of the 6th International Workshop on Runtime and Operating Systems for Supercomputers, ROSS 2016 - In conjunction with HPDC 2016

Evans, Noah; Laros, James H.; Kocoloski, Brian; Lange, John; Lang, Michael; Bridges, Patrick G.

As supercomputers move to exascale, the number of cores per node continues to increase, but the I/O bandwidth between nodes is increasing more slowly. This leads to computational power outstripping I/O bandwidth. This growth, in turn, encourages moving as much of an HPC workflow as possible onto the node in order to minimize data movement. One particular method of application composition, enclaves, co-locates different operating systems and runtimes on the same node where they communicate by in situ communication mechanisms. In this work, we describe a mechanism for communicating between composed applications. We implement a mechanism using Copy onWrite cooperating with XEMEM shared memory to provide consistent, implicitly unsynchronized communication across enclaves. We then evaluate this mechanism using a composed application and analytics between the Kitten Lightweight Kernel and Linux on top of the Hobbes Operating System and Runtime. These results show a 3% overhead compared to an application running in isolation, demonstrating the viability of this approach.

More Details
Results 251–275 of 395
Results 251–275 of 395