Publications

Results 82701–82725 of 96,771

Search results

Jump to search filters

Edge termination effects on finite aperture polarizers for polarimetric imaging applications at mid wave IR

Proceedings of SPIE - The International Society for Optical Engineering

Cruz-Cabrera, A.A.; Kemme, S.A.; Wendt, J.R.; Boye, Robert B.; Carter, T.R.; Samora, S.

Polarimetric imaging applications at the 2 to 5 μm or Mid-Wave Infrared (MWIR) range use large pixel-count focal plane arrays (FPA) with small pixel size. This project is centered in designing, fabricating and testing micropolarizers that work in that wavelength regime and intended for that type of FPAs. The micro-polarizers will be used in conjunction with a FPA in snapshot mode and will be in the near field of the imaging device. The pixel pitches for some commercial FPAs are small enough that the finite apertures of the polarizing devices may significantly affect their performance given that their aperture size varies between 3 and 5 waves. We are interested in understanding the effect on extinction ratio due to variations in the edge terminations of a polarizer with a small aperture. Edge terminations are the spaces between the first or last wire with the perimeter of the aperture of the polarizer. While this parameter has negligible effects on a larger polarizer, it will be significant for apertures that are about 3 to 5 waves. We will present data that indicates significant variation in performance due to edge terminations.

More Details

Pixilated wideband achromatic waveplates fabricated for the mid IR using subwavelength features

Proceedings of SPIE - The International Society for Optical Engineering

Boye, Robert B.; Kemme, S.A.; Wendt, J.R.; Cruz-Cabrera, A.A.; Vawter, Gregory A.; Alford, C.R.; Carter, T.R.; Samora, S.

Subwavelength diffractive features etched into a substrate lead to form birefringence that can be utilized to produce polarization sensitive elements such as waveplates. Using etched features allows for the development of pixilated devices to be used in conjunction with focal plane arrays in polarimetric imaging systems. Typically, the main drawback from using diffractive devices is their high sensitivity to wavelength. Taking advantage of the dispersion of the form birefringence, diffractive waveplates with good achromatic characteristics can be designed. We will report on diffractive waveplates designed for minimal phase retardation error across the 2-5 micron spectral regime. The required fabrication processes of the sub-wavelength feature sizes will be discussed as well as the achromatic performance and transmission efficiency of final devices. Previous work in this area has produced good results over a subset of this wavelength band, but designing for this extended band is particularly challenging. In addition, the effect of the finite size of the apertures of the pixilated devices is of particular interest since they are designed to be used in conjunction with a detector array. The influence of small aperture sizes will also be investigated.

More Details

Tunable THz detector based on a grating gated field-effect transistor

Proceedings of SPIE - The International Society for Optical Engineering

Shaner, Eric A.; Lee, Mark L.; Wanke, M.C.; Grine, A.D.; Reno, J.L.; Allen, S.J.

A split-grating-gate detector design has been implemented in an effort to combine the tunabiliry of the basic gratinggate detector with the high responsivity observed in these detectors when approaching the pinchoff regime. The redesign of the gates by itself offers several orders of magnitude improvement in resonant responsivity. Further improvements are gained by placing the detector element on a thermally isolating membrane in order to increase the effects of lattice heating on the device response.

More Details

A review of large-scale LNG spills: Experiments and modeling

Journal of Hazardous Materials

Luketa, Anay L.

The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided. © 2005 Elsevier B.V. All rights reserved.

More Details

Losses at magnetic nulls in pulsed-power transmission line systems

Physics of Plasmas

Mendel, C.W.; Pointon, Timothy D.; Savage, Mark E.; Seidel, D.B.; Magne, I.; Vázinet, R.

Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds. © 2006 American Institute of Physics.

More Details

Quantum-confined stark effect and polarization field in single quantum well InGaN/GaN LEDs

Materials Research Society Symposium Proceedings

Kaplar, Robert K.; Kurtz, S.R.; Koleske, Daniel K.

Based on the wurtzite crystal structure, large (MV/cm) polarization-induced electric fields are known to exist in InGaN single quantum wells (SQWs) grown perpendicular to the GaN c-axis, and these fields may impact optical device performance due to the quantum-confined Stark effect (QCSE). In general, the QCSE has experimentally been found to be smaller than the theoretical value expected for a coherently strained InGaN QW, and subsequently the InGaN/GaN QW polarization field is often under-estimated as well. In this study, we measure the QCSE in modulation-doped, InGaN/GaN SQW LEDs. The well-behaved capacitance-voltage (majority-carrier) characteristics of these devices allow us to unambiguously determine the applied field with bias. With this analysis, we de-couple the QCSE from the QW polarization field and show that although the applied field approaches the opposing QW polarization field theoretical value (i.e., flatband), the QCSE remains too small. We propose a localized-hole picture of the InGaN QW which explains our optical and electrical measurements. © 2006 Materials Research Society.

More Details

Crosstalk between nanotube devices: Contact and channel effects

Nanotechnology

Leonard, Francois L.

At reduced dimensionality, Coulomb interactions play a crucial role in determining device properties. While such interactions within the same carbon nanotube have been shown to have unexpected properties, device integration and multi-nanotube devices require the consideration of inter-nanotube interactions. We present calculations of the characteristics of planar carbon nanotube transistors including interactions between semiconducting nanotubes and between semiconducting and metallic nanotubes. The results indicate that inter-tube interactions affect both the channel behaviour and the contacts. For long channel devices, a separation of the order of the gate oxide thickness is necessary to eliminate inter-nanotube effects. Because of an exponential dependence of this length scale on the dielectric constant, very high device densities are possible by using high-κ dielectrics and embedded contacts. © 2006 IOP Publishing Ltd.

More Details

Resistive hose growth of intense ion beams propagating in air

Physical Review Special Topics - Accelerators and Beams

Rose, D.V.; Genoni, T.C.; Welch, D.R.; Mazarakis, Michael G.

The growth of the resistive hose instability for intense proton beams is examined using three-dimensional particle-in-cell simulations. The simulation results are compared with a time-dependent model of resistive hose growth that uses a spread-mass formulation and a time-dependent conductivity model. Radius tailoring of the beam head is shown to suppress high-frequency instability growth. In addition, the effects of a reduced-density plasma channel on the growth of the resistive hose instability is calculated. © 2006 The American Physical Society.

More Details

Imaging multiple endogenous and exogenous fluorescent species in cells and tissues

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Timlin, Jerilyn A.; Nieman, Linda T.; Jones, Howland D.; Sinclair, Michael B.; Haaland, David M.; Guzowski, John F.

Hyperspectral imaging provides complex image data with spectral information from many fluorescent species contained within the sample such as the fluorescent labels and cellular or pigment autofluorescence. To maximize the utility of this spectral imaging technique it is necessary to couple hyperspectral imaging with sophisticated multivariate analysis methods to extract meaningful relationships from the overlapped spectra. Many commonly employed multivariate analysis techniques require the identity of the emission spectra of each component to be known or pure component pixels within the image, a condition rarely met in biological samples. Multivariate curve resolution (MCR) has proven extremely useful for analyzing hyperspectral and multispectral images of biological specimens because it can operate with little or no a priori information about the emitting species, making it appropriate for interrogating samples containing autofluorescence and unanticipated contaminating fluorescence. To demonstrate the unique ability of our hyperspectral imaging system coupled with MCR analysis techniques we will analyze hyperspectral images of four-color in-situ hybridized rat brain tissue containing 455 spectral pixels from 550 - 850 nm. Even though there were only four colors imparted onto the tissue in this case, analysis revealed seven fluorescent species, including contributions from cellular autofluorescence and the tissue mounting media. Spectral image analysis will be presented along with a detailed discussion of the origin of the fluorescence and specific illustrations of the adverse effects of ignoring these additional fluorescent species in a traditional microscopy experiment and a hyperspectral imaging system.

More Details

Design, characterization and control of a large aperture MOEMS Fabry-Perot tunable infrared filter

Proceedings of SPIE - The International Society for Optical Engineering

Palmer, Jeremy A.; Hsieh, Wen T.; Quijada, Manuel; Mott, Brent; Akpan, Eddie; Brown, Gary L.; Jacobson, Mindy B.; Greenhouse, Matthew A.

A miniature Fabry-Perot tunable infrared filter under development at the NASA Goddard Space Flight Center is fabricated using micro opto electromechanical systems (MOEMS) technology. Intended for wide-field imaging spectroscopy in space flight, it features a large 10-mm diameter aperture structure that consists of a set of opposing suspended thin films 500 nanometers in thickness, supported by annular silicon disks. Achieving the desired effective finesse in the MOEMS instrument requires maximizing the RMS flatness in the film. This paper presents surface characterization data for the suspended aperture film prior to, and following application of a multi-layer dielectric mirror. A maximum RMS flatness of 38 nanometers was measured prior to coating, leading to an estimate of the maximum effective finesse of 14. Results show evidence of initial deformation of the silicon support structure due to internal stress in the substrate and thin film layers. Film stress gradients in the dielectric coating on either side of the aperture add convexity and other localized deflections. The design of a tuning system based upon electrostatic positioning with feedback control is presented.

More Details

In-situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems

Proceedings of SPIE - The International Society for Optical Engineering

Keeler, Gordon A.; Serkland, Darwin K.; Geib, K.M.; Klem, John F.; Peake, Gregory M.

Optical lime-domain reflectometry (OTDR) is an effeclive technique for locating faults in fiber communication links. The fact that most OTDR measurements are performed manually is a significant drawback, because it makes them too costly for use in many short-distance networks and too slow for use in military avionic platforms. Here we describe and demonstrate an automated, low-cost, real-time approach to fault monitoring that can be achieved by integrating OTDR functionality directly into VCSEL-based transceivers. This built-in test capability is straightforward to implement and relevant to both multimode and single mode networks. In-situ OTDR uses the transmitter VCSEL already present in data transceivers. Fault monitoring is performed by emitting a brief optical pulse into the fiber and then turning the VCSEL off. If a fault exists, a portion of the optical pulse returns to the transceiver after a time equal to the round-trip delay through the fiber. In multimode OTDR, the signal is detected by an integrated photodetector, while in single mode OTDR the VCSEL itself can be used as a detector. Modified driver electronics perform the measurement and analysis. We demonstrate that VCSEL-based OTDR has sufficient sensitivity to determine the location of most faults commonly seen in short-haul networks (i.e., the Fresnel reflections from improperly terminated fibers and scattering from raggedly-broken fibers). Results are described for single mode and multimode experiments, at both 850 nm and 1.3 μm. We discuss the resolution and sensitivity that have been achieved, as well as expected limitations for this novel approach to network monitoring.

More Details

Vibrational spectra of methane clathrate hydrates from molecular dynamics simulation

Journal of Physical Chemistry B

Greathouse, Jeffery A.; Cygan, Randall T.; Simmons, Blake S.

Molecular dynamics simulations were performed on methane clathrate hydrates at ambient conditions. Thermal expansion results over the temperature range 60-300 K show that the unit cell volume increases with temperature in agreement with experiment. Power spectra were obtained at 273 K from velocity autocorrelation functions for selected atoms, and normal modes were assigned. The spectra were further classified according to individual atom types, allowing the assignment of contributions from methane molecules located in small and large cages within the structure I unit cell. The symmetric C-H stretch of methane in the small cages occurs at a higher frequency than for methane located in the large cages, with a peak separation of 14 cm-1. Additionally, we determined that the symmetric C-H stretch in methane gas occurs at the same frequency as methane in the large cages. Results of molecular dynamics simulations indicate the use of power spectra obtained from the velocity autocorrelation function is a reliable method to investigate the vibrational behavior of guest molecules in clathrate hydrates. © 2006 American Chemical Society.

More Details

BAC-MP4 predictions of thermochemistry for gas-phase antimony compounds in the Sb-H-C-O-Cl system

Journal of Physical Chemistry A

Skulan, Andrew J.; Nielsen, Ida M.B.; Melius, Carl F.; Allendorf, Mark D.

Calibrated by both experimental data and high-level coupled-cluster calculations, the BAC-MP4 methodology was applied to 51 SbL n (L = H, CH 3, C 2H 5, Cl, and OH, n = 1-5) molecules, providing calculated heats of formation and associated thermodynamic parameters. These data identify a linear variation in heats of formation with ligand substitution, trends in bond dissociation energies (BDEs) with ligand identity [BDE(Sb-C 2H 5) < BDE(Sb-CH 3) < BDE(Sb-H) < BDE(Sb-Cl) < BDE(Sb-OH)], and a monotonie decrease in BDE upon successive ligand elimination. The linear variation in BDE is consistent with the behavior of other group V elements, in contrast to the characteristic high-low-high trend of adjacent group III (In) and group IV (Sn) elements. Additionally, these data complement those of previous studies of metal-organic species and provide a foundation of thermochemical data that can aid in the selection of CVD precursors and deposition conditions for the growth of antimony-containing materials. © 2006 American Chemical Society.

More Details

The optimized effective potential with finite temperature

Journal of Physics Condensed Matter

Lippert, R.A.; Modine, N.A.; Wright, A.F.

The optimized effective potential (OEP) method provides an additional level of exactness in the computation of electronic structures, e.g. the exact exchange energy can be used. This extra freedom is likely to be important in moving density functional methods beyond traditional approximations such as the local density approximation. We provide a new density-matrix-based derivation of the gradient of the Kohn-Sham energy with respect to the effective potential. This gradient can be used to iteratively minimize the energy in order to find the OEP. Previous work has indicated how this can be done in the zero temperature limit. This paper generalizes the previous results to the finite temperature regime. Equating our gradient to zero gives a finite temperature version of the OEP equation. © IOP Publishing Ltd.

More Details

Fabrication issues for a chirped, subwavelength form-birefringent polarization splitter

Proceedings of SPIE - The International Society for Optical Engineering

Kemme, S.A.; Wendt, J.R.; Vawter, Gregory A.; Cruz-Cabrera, A.A.; Peters, D.W.; Boye, Robert B.; Alford, C.R.; Carter, T.R.; Samora, S.

We report here on an effort to design and fabricate a polarization splitter that utilizes form-birefringence to disperse an input beam as a function of polarization content as well as wavelength spectrum. Our approach is unique in the polarization beam splitting geometry and the potential for tailoring the polarized beams' phase fronts to correct aberrations or add focusing power. A first cut design could be realized with a chirped duty cycle grating at a single etch depth. However, this approach presents a considerable fabrication obstacle since etch depths are a strong function of feature size, or grating period. We fabricated a period of 1.0 micron form-birefringent component, with a nominal depth of 1.7 microns, in GaAs using a CAIBE system with a 2-inch ion beam source diameter. The gas flows, ion energy, and sample temperature were all optimized to yield the desired etch profile.

More Details

Advancing three-dimensional MEMS by complimentary laser micro manufacturing

Proceedings of SPIE - The International Society for Optical Engineering

Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by X-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL). an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of X-ray lithography. Accurate three-dimensional metal inicrostructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

More Details

Experimental apparatus and software design for dynamic long-term reliability testing of a spring-mass MEMS device

Proceedings of SPIE - The International Society for Optical Engineering

Reu, Phillip L.; Tanner, Danelle M.; Epp, David E.; Parson, Ted B.; Boyce, Brad B.

Long-term reliability testing of Micro-Electro-Mechanical Systems (MEMS) is important to the acceptance of these devices for critical and high-impact applications. In order to make predictions on aging mechanisms, these validation experiments must be performed in controlled environments. Additionally, because the aging acceleration factors are not understood, the experiments can last for months. This paper describes the design and implementation of a long-term MEMS reliability test bed for accelerated life testing. The system is comprised of a small environmental chamber mounted on an electrodynamic shaker with a laser Doppler vibrometer (LDV) and digital camera for data collection. The humidity and temperature controlled chamber has capacity for 16 MEMS components in a 4×4 array. The shaker is used to dynamically excite the devices using broadband noise, chirp or any other programmed signal via the control software. Driving amplitudes can be varied to maintain the actuation of the test units at the desired level. The actuation is monitored optically via the LDV which can report the displacement or velocity information of the surface. A springmass accelerated aging experiment was started using a controlled environment of 5000 ppmv humidity (roughly 13% at room temperature), temperature of 29 °C, and ±80μm maximum displacement of the mass. During the first phase of the experiment, the resonant frequency was measured every 2 hours. From 114.5 to 450 hours under stress, measurements were taken every 12 hours and after that every 24 hours. Resonant frequency tracking indicates no changes in the structures for 4200 hours of testing.

More Details

Alkylation of benzene using batch and continuous fixed-bed reactors

Chemical Engineering Communications

Buelna, Genoveva; Ulutagay-Kartin, Mutlu; Nenoff, T.M.

Alkylation reactions of benzene with propylene using heterogeneous catalysts H+-β zeolite, MCM-22, and ZSM-5 were studied for their affinity for cumene production. This work focused on the gas-phase reaction using different crystalline catalysts at several temperatures and amounts of reactants using both batch and continuous fixed-bed reactors. The properties of baseline commercial H+ -β catalysts versus versions modified with Ga, La, and Pt were studied. Quantitative analysis of product mixture was performed by gas chromatography. For the batch reactor, β-zeolite produced the highest cumene yield and selectivity of 72% and 92%, respectively, at 225°C. At this temperature, a benzene:propylene dilution of 7:1 molar ratio was the optimum. For the continuous system, cumene production is favored at lower space velocities, higher benzene-to-propylene ratio, and temperatures close to 225°C. Ga modification of the H+-β zeolite significantly enhanced cumene yield in the continuous fixed-bed reactor at 225°C, from 27% of the unmodified β-zeolite to 36% for the Ga-modified one. The life span of modified β-catalysts was studied in the fixed-bed reactor for the first eight hours of reaction. Copyright © Taylor & Francis Group, LLC.

More Details

K-shell radiation physics in low- to moderate-atomic-number z-pinch plasmas on the Z accelerator

Journal of Quantitative Spectroscopy and Radiative Transfer

Jones, Brent M.; Deeney, C.; Coverdale, Christine A.; LePell, P.D.; Mckenney, John M.; Apruzese, J.P.; Thornhill, J.W.; Whitney, K.G.; Clark, R.W.; Velikovich, A.L.; Davis, J.; Maron, Y.; Kantsyrev, V.; Safronova, A.; Oreshkin, V.I.

Dense z-pinches produced by 100 ns implosions of wire arrays or gas puffs produce substantial soft X-ray power. One class of z-pinch radiation sources includes low- to moderate-atomic-number K-shell radiators, such as aluminum and iron. These loads are designed for 1-10 keV K-shell X-ray generation, and offer opportunities for crystal spectroscopy that can reveal fundamental properties of the plasma when studied using plasma spectroscopic modeling. Typically these plasmas are characterized by ion densities of ∼1020 cm-3, diameters of 1-5 mm, electron temperatures up to several keV, and a range of opacities of the K-shell lines. Measurements from wire arrays on Sandia's 20 MA Z accelerator are presented along with collisional radiative and hydrodynamic simulations. The impact of opacity and 3D structure on non-LTE, non-diffusive radiation transport and X-ray production is discussed. © 2005 Elsevier Ltd. All rights reserved.

More Details

Steady evaporating flow in rectangular microchannels

International Journal of Heat and Mass Transfer

Nilson, Robert H.; Tchikanda, S.W.; Griffiths, Stewart K.; Martinez, Mario J.

Analytical and numerical solutions are presented for steady evaporating flow in open microchannels having a rectangular cross section and a uniform depth. The flow, driven by the axial gradient of capillary pressure, generally consists of an entry region where the meniscus is attached to the top corners of the channel followed by a jump-like transition to a corner-flow region in which the meniscus progressively recedes into the bottom corners of the channel. Illustrative numerical solutions are used to guide the derivation of an easily applied analytical approximation for the maximum sustainable heat flux or capillary limit. © 2005 Elsevier Ltd. All rights reserved.

More Details

Initiation of polymer degradation via transfer of infectious species

Polymer Degradation and Stability

Celina, M.; Clough, Roger L.; Jones, Gary D.

A novel dual stage chemiluminescence detection system incorporating individually controlled hot stages has been developed and applied to probe for material interaction effects during polymer degradation. Utilization of this system has resulted in experimental confirmation for the first time that in an oxidizing environment a degrading polymer A (in this case polypropylene, PP) is capable of infecting a different polymer B (in this case polybutadiene, HTPB) over a relatively large distance. In the presence of the infectious degrading polymer A, the thermal degradation of polymer B is observed over a significantly shorter time period. Consistent with infectious volatiles from material A initiating the degradation process in material B it was demonstrated that traces (micrograms) of a thermally sensitive peroxide in the vicinity of PP could induce degradation remotely. This observation documents cross-infectious phenomena between different polymers and has major consequences for polymer interactions, understanding fundamental degradation processes and long-term aging effects under combined material exposures.

More Details

High slope efficiency measured from a composite-resonator vertical-cavity laser

IEEE Photonics Technology Letters

Grasso, D.M.; Choquette, K.D.; Serkland, Darwin K.; Peake, G.M.; Geib, K.M.

We report high differential slope of the light versus current (L-I) characteristic in excess of 400% external quantum efficiency from a monolithic dual resonator vertical-cavity surface-emitting laser. The additional optical cavity of the composite resonator can provide gain or loss to the distributed laser mode, depending on the bias conditions. We describe the factors contributing to the internal optical loss, and present a qualitative model for the L-I characteristic. With sufficient current injected into the top cavity, the composite-resonator vertical-cavity laser achieves over 6 W/A of differential slope efficiency from threshold to greater than 1 mW of output power, which may be applicable for analog optical data links. © 2006 IEEE.

More Details

Modal testing of the TX-100 wind turbine blade

Griffith, Daniel G.; Smith, Gregory E.; Casias, Miguel E.; Simmermacher, Todd W.

This test report covers the SNL modal test results for two nominally identical TX-100 wind turbine blades. The TX-100 blade design is unique in that it features a passive braking, force-shedding mechanism where bending and torsion are coupled to produce desirable aerodynamic characteristics. A specific aim of this test is to characterize the coupling between bending and torsional dynamics. The results of the modal tests and the subsequent analysis characterize the natural frequencies, damping, and mode shapes of the individual blades. The results of this report are expected to be used for model validation--the frequencies and mode shapes from the experimental analysis can be compared with those of a finite-element analysis. Damping values are included in the results of these tests to potentially improve the fidelity of numerical simulations, although numerical finite element models typically have no means of predicting structural damping characteristics. Thereafter, an additional objective of the test is achieved in evaluating the test to test and unit variation in the modal parameters of the two blades.

More Details
Results 82701–82725 of 96,771
Results 82701–82725 of 96,771