The formation of 10-nm ZnO nanopyramids using a simple synthetic route has been isolated from the reaction of Zn(OAc)2·2H2O in 1,4-butanediol followed by ripening at 90°C. This was accomplished by establishing control over the Ostwald ripening process through the use of a carboxylic acid specific adsorbate. Using a variety of analytical methods, it is proposed that the carboxylate groups in the acetate precursor stabilize the {101} habit planes, creating septahedral shapes or nanopyramids. Particle assembly into crystallographically oriented dimers was observed with high specificity, and the association mechanism is suggested to relate to the crystal polarity and the variation in specific adsorption of the carboxylic acid to the surface facets. These materials are a candidate for biological labeling applications in living cells.
Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations show that R141b hydrate is stable at temperatures up to 265K, while the isomer hydrate is only stable up to 150K. Despite hydrogen bonding between guest and host, R141b molecules rotated freely within the water cage. The Raman spectrum of R141b in both the pure and hydrate phases was also compared with vibrational analysis from both computational methods. In particular, the frequency of the C-Cl stretch mode (585 cm{sup -1}) undergoes a shift to higher frequency in the hydrate phase. Raman spectra also indicate that this peak undergoes splitting and intensity variation as the temperature is decreased from 4 C to -4 C.
The shape control of thin, flexible structures has been studied primarily for edge-supported thin-plates. For applications such as electromagnetic wave reflectors, corner-supported configurations may prove more applicable since they allow for greater flexibility and larger achievable deflections when compared to edge-supported geometries under similar actuation conditions. Models of such structures provide insight for effective, realizable designs, enable design optimization, and provide a means of active shape control. Models for small deformations of corner-supported, thin laminates actuated by integrated piezoelectric actuators have been developed. However, membrane deflections expected for nominal actuation exceed those stipulated by linear, small deflection theories. In addition, large deflection models have been developed for membranes; however these models are not formulated for shape control. This paper extends a previously-developed linear model for a corner-supported thin, rectangular laminate to a more general large deflection model for a clamped-corner laminate composed of moment actuators and an array of actuating electrodes. First, a nonlinear model determining the deflected shape of a laminate given a distribution of actuation voltages is derived. Second, a technique is employed to formulate the model as a map between input voltage and deflection alone, making it suitable for shape control. Finally, comparisons of simulated deflections with measured deflections of a fabricated active laminate are investigated.
This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.
We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support for domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.
A previous LDRD studying radiation hardened optoelectronic components for space-based applications led to the result that increased neutron irradiation from a fast-burst reactor caused increased responsivity in GaAs photodiodes up to a total fluence of 4.4 x 10{sup 13} neutrons/cm{sup 2} (1 MeV Eq., Si). The silicon photodiodes experienced significant degradation. Scientific literature shows that neutrons can both cause defects as well as potentially remove defects in an annealing-like process in GaAs. Though there has been some modeling that suggests how fabrication and radiation-induced defects can migrate to surfaces and interfaces in GaAs and lead to an ordering effect, it is important to consider how these processes affect the performance of devices, such as the basic GaAs p-i-n photodiode. In this LDRD, we manufactured GaAs photodiodes at the MESA facility, irradiated them with electrons and neutrons at the White Sands Missile Range Linac and Fast Burst Reactor, and performed measurements to show the effect of irradiation on dark current, responsivity and high-speed bandwidth.
Particle image velocimetry (PIV) data have been acquired using three different experimental configurations in the far-field of the interaction created by a transverse supersonic jet exhausting from a flat plate into a transonic crossflow. The configurations included two-component PIV in the centerline streamwise plane at two overlapping downstream stations, as well as stereoscopic PIV in both the same streamwise plane and in the crossplane. All measurement planes intersected at a common line. Data from both two-component measurement stations and the stereoscopic streamwise configuration agreed to within the estimated uncertainty, but data from the crossplane exhibited reduced velocity and turbulent stress magnitudes by a small but significant degree. Subsequent reprocessing of the data in nominally the same manner using a newer software package brought all values into close agreement with each other, but produced turbulent stresses substantially higher than those from the first software package. The error source associated with the choice of software was traced to the use of image deformation in the newer software to treat velocity gradients, which synthetic PIV tests show yields a more accurate result for turbulence measurements even for gradients within the recommended limits for classical PIV. These detailed comparisons of redundant data suggest that routine methods of uncertainty quantification may not fully capture the error sources of an experiment.
An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.
The Galerkin projection procedure for construction of reduced order models of compressible flow is examined as an alternative discretization of the governing differential equations. The numerical stability of Galerkin models is shown to depend on the choice of inner product for the projection. For the linearized Euler equations, a symmetry transform leads to a stable formulation for the inner product. Boundary conditions for compressible flow that preserve stability of the reduced order model are constructed. Coupling with a linearized structural dynamics model is made possible through the solid wall boundary condition. Preservation of stability for the discrete implementation of the Galerkin projection is made possible using piecewise-smooth finite element bases. Stability of the coupled fluid/structure system is examined for the case of uniform flow past a thin plate. Stability of the reduced order model for the fluid is demonstrated on several model problems, where a suitable approximation basis is generated using proper orthogonal decomposition of a transient computational fluid dynamics simulation.