The development of carbon-carbon (C-C) composites for aerospace applications has prompted the need for ways to improve the poor oxidation resistance of these materials, In order to evaluate and test materials to be used as thermal protection system (TPS) material the need for readily available and reliable testing methods are critical to the success of materials development efforts, With the purpose to evaluate TPS materials, three testing methods were used to assess materials at high temperatures (> 2000°C) and heat flux in excess of 200 Wcm-2. The first two methods are located at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories, which are the Solar Furnace Facility and the Solar Tower Facility, The third method is an oxyacetylene torch set up according to ASTM E285-80 with oxidizing flame control and maximum achievable temperatures in excess of 2000°C In this study, liquid precursors to ultra high temperature ceramics (UHTCs) have been developed into multilayer coatings on C-C composites and evaluated using the oxidation testing methods. The tests will be discussed in detail and correlated with preliminary materials evaluation results with the aim of presenting an understanding of the testing environment on the materials evaluated for oxidation resistance.
Glass-to-metal (GTM) seals maintain hermeticity while allowing the passage of electrical signals. Typically, these seals are comprised of one or more metal pins encapsulated in a glass which is contained in a metal shell. In compression seals, the coefficient of thermal expansion of the metal shell is greater than the glass, and the glass is expected to be in compression. Recent development builds of a multi-pin GTM seal revealed severe cracking of the glass, with cracks originating at or near the pin-glass interface, and propagating circumferentially. A series of finite element analyses (FEA) was performed for this seal with the material set: 304 stainless steel (SS304) shell, Schott S-8061 (or equivalent) glass, and Alloy 52 pins. Stress-strain data for both metals was fit by linear-hardening and power-law hardening plasticity models. The glass layer thickness and its location with respect to geometrical features in the shell were varied. Several additional design changes in the shell were explored. Results reveal that: (1) plastic deformation in the small-strain regime in the metals lead to radial tensile stresses in glass, (2) small changes in the mechanical behavior of the metals dramatically change the calculated stresses in the glass, and (3) seemingly minor design changes in the shell geometry influence the stresses in the glass significantly. Based on these results, guidelines for materials selection and design of seals are provided.
Thermal gravimetric analysis (TGA) combined with evolved gas analysis by Fourier transform infrared spectroscopy (FTIR) or mass spectrometry (MS) often is used to study thermal decomposition of organic polymers. Frequently, results are used to determine decomposition mechanisms and to develop rate expressions for a variety of applications, which include hazard analyses. Although some current TGA instruments operate with controlled heating rates as high as 500° C/min, most experiments are done at much lower heating rates of about 5° to 50° C/min to minimize temperature gradients in the sample. The intended applications, such as hazard analyses involving fire environments, for rate expressions developed from TGA experiments often involve heating rates much greater than 50° C/min. The heating rate can affect polymer decomposition by altering relative rates at which competing decomposition reactions occur. Analysis of the effect of heating rate on competing first-order decomposition reactions with Arrhenius rate constants indicated that relative to heating rates of 5° to 50° C/min, observable changes in decomposition behavior may occur when heating rates approach 1,000° C/min. Results from experiments with poly(methyl methacrylate) (PMMA) samples that were heated at 5° to 50° C/min during TGA-FTIR experiments and results from experiments with samples heated at rates on the order of 1,000° C/min during pyrolysis-GC-FTIR experiments supported the analyses.
The Wind Energy Technology Department at Sandia National Laboratories (SNL) focuses on producing innovations in wind turbine blade technology to enable the development of longer blades that are lighter, more structurally and aerodynamically efficient, and impart reduced loads to the system. A large part of the effort is to characterize the properties of relevant composite materials built with typical manufacturing processes. This paper provides an overview of recent studies of composite laminates for wind turbine blade construction and summarizes test results for three prototype blades that incorporate a variety of material-related innovations.
The Wind Energy Technology Department at Sandia National Laboratories (SNL) focuses on producing innovations in wind turbine blade technology to enable the development of longer blades that are lighter, more structurally and aerodynamically efficient, and impart reduced loads to the system. A large part of the effort is to characterize the properties of relevant composite materials built with typical manufacturing processes. This paper provides an overview of recent studies of composite laminates for wind turbine blade construction and summarizes test results for three prototype blades that incorporate a variety of material-related innovations.
Silica based glasses are commonly used as window material in applications which are subject to high velocity impacts. Thorough understanding of the response to shock loading in these materials is crucial to the development of new designs. Despite the lack of long range order in amorphous glasses, the structure can be described statistically by the random network model. Changes to the network structure alter the response to shock loading. Results indicate that in fused silica, substitution of boron as a network former does not have a large effect on the shock loading properties while modifying the network with sodium and calcium changes the dynamic response. These initial results suggest the potential of a predictive capability to determine the effects of other network substitutions.
This paper summarizes the numerical site scale model developed to simulate the transport of radionuclides via ground water in the saturated zone beneath Yucca Mountain.
Preparing Computer Aided Design models for successful mesh generation continues to be a crucial part of the design to analysis process. A common problem in CAD models is features that are very small compared to the desired mesh size. Small features exist for a variety of reasons and can require an excessive amount of elements or inhibit mesh generation all together. Many of the tools for removing small features modify only the topology of the model (often in a secondary topological representation of the model) leaving the underlying geometry as is. The availability of tools that actually modify the topology and underlying geometry in the boundary representation (B-rep) model is much more limited regardless of the inherent advantages of this approach. This paper presents a process for removing small featrues from a B-rep model using almost solely functionality provided by the underlying solid modeling kernel. The process cuts out the old topology and reconstructs new topology and geometry to close the volume. The process is quite general and can be applied to complex configurations of unwanted topology.
Systems in flight often encounter environments with combined vibration and constant acceleration. Sandia National Laboratories has developed a new system capable of combining these environments for hardware qualification testing on a centrifuge. To demonstrate that combined vibration plus centrifuge acceleration is equivalent to the vibration and acceleration encountered in a flight environment the equations of motion of a spring mass damper system in each environment were derived and compared. These equations of motion suggest a decrease in natural frequency for spring mass damper systems undergoing constant rotational velocity on a centrifuge. It was shown mathematically and through experimental testing that the natural frequency of a spring-mass system will decrease with increased rotational velocity. An increase of rotational velocity will eventually result in system instability. The development and testing of a mechanical system to demonstrate this characteristic is discussed. Results obtained from frequency domain analysis of time domain data is presented as is the implications these results conclude about centrifuge testing of systems with low natural frequency on small radius centrifuges.
Quantitative studies of material properties and interfaces using the atomic force microscope (AFM) have important applications in engineering, biotechnology and chemistry. Emerging studies require an estimate of the stiffness of the probe so that the forces exerted on a sample can be determined from the measured displacements. Numerous methods for determining the spring constant of AFM cantilevers have been proposed, yet none accounts for the effect of the mass of the probe tip on the calibration procedure. This work demonstrates that the probe tip does have a significant effect on the dynamic response of an AFM cantilever by experimentally measuring the first few modes of a commercial AFM probe and comparing them with those of a theoretical model for a cantilever probe that does not have a tip. The mass and inertia of an AFM probe tip are estimated from scanning electron microscope images and a simple model for the probe is derived and tuned to match the first few modes of the actual probe. Analysis suggests that both the method of Sader and the thermal tune method of Hutter and Bechhoefer give erroneous predictions of the area density or the effective mass of the probe. However, both methods do accurately predict the static stiffness of the AFM probe due to the fact that the mass terms cancel so long as the mode shape of the AFM probe does not deviate from the theoretical model. The calibration errors that would be induced due to differences between mode shapes measured in this study and the theoretical ones are estimated.
Advancements in our capabilities to accurately model physical systems using high resolution finite element models have led to increasing use of models for prediction of physical system responses. Yet models are typically not used without first demonstrating their accuracy or, at least, adequacy. In high consequence applications where model predictions are used to make decisions or control operations involving human life or critical systems, a movement toward accreditation of mathematical model predictions via validation is taking hold. Model validation is the activity wherein the predictions of mathematical models are demonstrated to be accurate or adequate for use within a particular regime. Though many types of predictions can be made with mathematical models, not all predictions have the same impact on the usefulness of a model. For example, predictions where the response of a system is greatest may be most critical to the adequacy of a model. Therefore, a model that makes accurate predictions in some environments and poor predictions in other environments may be perfectly adequate for certain uses. The current investigation develops a general technique for validating mathematical models where the measures of response are weighted in some logical manner. A combined experimental and numerical example that demonstrates the validation of a system using both weighted and non-weighted response measures is presented.
Force and moment measurements have been made on an instrumented subscale fin model at transonic speeds in Sandia's Trisonic Wind Tunnel to ascertain the effects of Mach number and angle of attack on the interaction of a trailing vortex with a downstream control surface. Components of normal force, bending moment, and hinge moment were measured on an instrumented fin downstream of an identical fin at Mach numbers between 0.85 and 1.24, and combinations of angles of attack between -5° and 10° for both fins. The primary influence of upstream fin deflection is to shift the downstream fin's forces in a direction consistent with the vortex-induced angle of attack on the downstream fin. Secondary non-linear effects of vortex lift were found to increase the slopes of normal force and bending moment coefficients when plotted versus fin deflection angle. This phenomenon was dependent upon Mach number and the angles of attack of both fins. The hinge moment coefficient was also influenced by the vortex lift as the center of pressure was pushed aft with increased Mach number and total angle of attack.
In 2002, Sandia National Laboratories (SNL) initiated a research program to demonstrate the use of carbon fiber in wind turbine blades and to investigate advanced structural concepts through the Blade Systems Design Study, known as the BSDS. One of the blade designs resulting from this program, commonly referred to as the BSDS blade, resulted from a systems approach in which manufacturing, structural and aerodynamic performance considerations were all simultaneously included in the design optimization. The BSDS blade design utilizes "flatback" airfoils for the inboard section of the blade to achieve a lighter, stronger blade. Flatback airfoils are generated by opening up the trailing edge of an airfoil uniformly along the camber line, thus preserving the camber of the original airfoil. This process is in distinct contrast to the generation of truncated airfoils, where the trailing edge the airfoil is simply cut off, changing the camber and subsequently degrading the aerodynamic performance. Compared to a thick conventional, sharp trailing-edge airfoil, a flatback airfoil with the same thickness exhibits increased lift and reduced sensitivity to soiling. Although several commercial turbine manufacturers have expressed interest in utilizing flatback airfoils for their wind turbine blades, they are concerned with the potential extra noise that such a blade will generate from the blunt trailing edge of the flatback section. In order to quantify the noise generation characteristics of flatback airfoils, Sandia National Laboratories has conducted a wind tunnel test to measure the noise generation and aerodynamic performance characteristics of a regular DU97-300-W airfoil, a 10% trailing edge thickness flatback version of that airfoil, and the flatback fitted with a trailing edge treatment. The paper describes the test facility, the models, and the test methodology, and provides some preliminary results from the test.
This report focuses on our recent advances in the fabrication and processing of barium strontium titanate (BST) thin films by chemical solution depositiion for next generation fuctional integrated capacitors. Projected trends for capacitors include increasing capacitance density, decreasing operating voltages, decreasing dielectric thickness and decreased process cost. Key to all these trends is the strong correlation of film phase evolution and resulting microstructure, it becomes possible to tailor the microstructure for specific applications. This interplay will be discussed in relation to the resulting temperature dependent dielectric response of the BST films.