Publications

Results 91151–91175 of 99,299

Search results

Jump to search filters

Molecular dynamic simulations, {sup 6}Li solid state NMR and ultraphosphate glasses

NMR Newsletter

Alam, Todd M.

The author's laboratory continues to use NMR to investigate the structure and dynamics in amorphous materials, including the local structure of ultraphosphate glasses. Changes in the alkali environment in these phosphate glasses as a function of modifier concentration has recently been probed using {sup 6}Li and {sup 23}Na solid state NMR. Molecular dynamic (MD) simulations have also been performed in an attempt to gain additional insight into the variations of the local structure. Interestingly, although there are distinct variations in the Li coordination number as well as the Li-O bond lengths in the MD simulations (with a minimum or maximum in these parameters near the 20% Li{sub 2}O concentration), a linear change in the {sup 6}Li NMR chemical shift is observed between 5 and 50% Li{sub 2}O mole fraction. One would expect that such variations should be observable in the NMR chemical shift. In an attempt to understand this behavior the author has performed empirical calculation of the {sup 6}Li NMR chemical shift directly from the structures obtained in the MD simulations. It has been argued that the NMR chemical shift of alkali species can be related to a chemical shift parameter A, where A is defined as the summation of the shift contributions for all the oxygens located within the first (and possibly the second) coordination sphere around the cation. For the present case of Li phosphate glasses, the chemical shift correlates directly to the bond valence of the coordinating oxygen.

More Details

Optical properties of colloidal germanium nanocrystals

Physical Review BIS

Wilcoxon, Jess P.; Provencio, P.N.; Samara, George A.

Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

More Details

Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge diatomite field

SPE Reservoir Evaluation and Engineering

Fredrich, Joanne T.; Arguello, Jose G.

Geologic, and historical well failure, production, and injection data were analyzed to guide development of three-dimensional geomechanical models of the Belridge diatomite field, California. The central premise of the numerical simulations is that spatial gradients in pore pressure induced by production and injection in a low permeability reservoir may perturb the local stresses and cause subsurface deformation sufficient to result in well failure. Time-dependent reservoir pressure fields that were calculated from three-dimensional black oil reservoir simulations were coupled uni-directionally to three-dimensional non-linear finite element geomechanical simulations. The reservoir models included nearly 100,000 gridblocks (100--200 wells), and covered nearly 20 years of production and injection. The geomechanical models were meshed from structure maps and contained more than 300,000 nodal points. Shear strain localization along weak bedding planes that causes casing dog-legs in the field was accommodated in the model by contact surfaces located immediately above the reservoir and at two locations in the overburden. The geomechanical simulations are validated by comparison of the predicted surface subsidence with field measurements, and by comparison of predicted deformation with observed casing damage. Additionally, simulations performed for two independently developed areas at South Belridge, Sections 33 and 29, corroborate their different well failure histories. The simulations suggest the three types of casing damage observed, and show that although water injection has mitigated surface subsidence, it can, under some circumstances, increase the lateral gradients in effective stress, that in turn can accelerate subsurface horizontal motions. Geomechanical simulation is an important reservoir management tool that can be used to identify optimal operating policies to mitigate casing damage for existing field developments, and applied to incorporate the effect of well failure potential in economic analyses of alternative infilling and development options.

More Details

Surfkin: A program to solve transient and steady state heterogeneous reaction kinetics

Coltrin, Michael E.; Wixom, Ryan R.

Heterogeneous chemical reactions occurring at a gas/surface interface are fundamental in a variety of important applications, such as combustion, catalysis, chemical vapor deposition and plasma processing. Detailed simulation of these processes may involve complex, coupled fluid flow, heat transfer, gas-phase chemistry, in addition to heterogeneous reaction chemistry. This report documents the Surfkin program, which simulates the kinetics of heterogeneous chemical reactions. The program is designed for use with the Chemkin and Surface Chemkin (heterogeneous chemistry) programs. It calculates time-dependent or steady state surface site fractions and bulk-species production/destruction rates. The surface temperature may be specified as a function of time to simulate a temperature-programmed desorption experiment, for example. This report serves as a user's manual for the program, explaining the required input and format of the output. Two detailed example problems are included to further illustrate the use of this program.

More Details

Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant

Nigrey, Paul J.

This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.

More Details

Materials Issues for Micromachines Development - ASCI Program Plan

Fang, H.E.; Miller, Samuel L.; Dugger, Michael T.; Prasad, Somuri V.; Reedy, Earl D.; Thompson, A.P.; Wong, Chungnin C.; Yang, Pin; Battaile, Corbett C.; Benavides, Gilbert L.; Ensz, Mark T.; Buchheit, Thomas E.; Lavan, David A.; Chen, Er-Ping; Christenson, Todd R.; De Boer, Maarten P.

This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.

More Details

Technologies for energy storage flywheels and super conducting magnetic energy storage

Boyes, John D.

A flywheel is an electromechanical storage system in which energy is stored in the kinetic energy of a rotating mass. Flywheel systems under development include those with steel flywheel rotors and resin/glass or resin/carbon-fiber composite rotors. The mechanics of energy storage in a flywheel system are common to both steel- and composite-rotor flywheels. In both systems, the momentum of the rotating rotor stores energy. The rotor contains a motor/generator that converts energy between electrical and mechanical forms. In both types of systems, the rotor operates in a vacuum and spins on bearings to reduce friction and increase efficiency. Steel-rotor systems rely mostly on the mass of the rotor to store energy while composite flywheels rely mostly on speed. During charging, an electric current flows through the motor increasing the speed of the flywheel. During discharge, the generator produces current flow out of the system slowing the wheel down. The basic characteristics of a Flywheel system are shown. Steel flywheel systems are currently being marketed in the US and Germany and can be connected in parallel to provide greater power if required. Sizes range from 40kW to 1.6MW for times of 5--120 seconds. At this time sales are limited but growing. The suppliers of the composite type flywheel systems are currently in the prototype stages of development. Flywheel systems offer several potential advantages. FES systems, as their developers envision them will have exceptionally long service lives and low life-cycle costs as a result of minimal O and M requirements. FES systems are compact and self-contained allowing them to be placed in tight quarters, and they contain no hazardous chemicals nor do they produce flammable gases.

More Details

Reexamination of spent fuel shipment risk estimates

Sprung, J.L.

The risks associated with the transport of spent nuclear fuel by truck and rail have been reexamined and compared to results published in NUREG-O170 and the Modal Study. The full reexamination considered transport of PWR and BWR spent fuel by truck and rail in four generic Type B spent fuel casks. Because they are typical, this paper presents results only for transport of PWR spent fuel in steel-lead steel casks. Cask and spent fuel response to collision impacts and fires were evaluated by performing three-dimensional finite element and one-dimensional heat transport calculations. Accident release fractions were developed by critical review of literature data. Accident severity fractions were developed from Modal Study truck and rail accident event trees, modified to reflect the frequency of occurrence of hard and soft rock wayside route surfaces as determined by analysis of geographic data. Incident-free population doses and the population dose risks associated with the accidents that might occur during transport were calculated using the RADTRAN 5 transportation risk code. The calculated incident-free doses were compared to those published in NUREG-O170. The calculated accident dose risks were compared to dose risks calculated using NUREG-0170 and Modal Study accident source terms. The comparisons demonstrated that both of these studies made a number of very conservative assumptions about spent fuel and cask response to accident conditions, which caused their estimates of accident source terms, accident frequencies, and accident consequences to also be very conservative. The results of this study and the previous studies demonstrate that the risks associated with the shipment of spent fuel by truck or rail are very small.

More Details

Application of finite element, global polynomial, and kriging response surfaces in Progressive Lattice Sampling designs

Romero, Vicente J.; Swiler, Laura P.; Giunta, Anthony A.

This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.

More Details

Minimum-time control of systems with Coloumb friction: Near global optima via mixed integer linear programming

Driessen, Brian J.

This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.

More Details

Surety of human elements of high consequence systems: An organic model

Forsythe, James C.; Wenner, Caren A.

Despite extensive safety analysis and application of safety measures, there is a frequent lament, ``Why do we continue to have accidents?'' Two breakdowns are prevalent in risk management and prevention. First, accidents result from human actions that engineers, analysts and management never envisioned and second, controls, intended to preclude/mitigate accident sequences, prove inadequate. This paper addresses the first breakdown, the inability to anticipate scenarios involving human action/inaction. The failure of controls has been addressed in a previous publication (Forsythe and Grose, 1998). Specifically, this paper presents an approach referred to as surety. The objective of this approach is to provide high levels of assurance in situations where potential system failure paths cannot be fully characterized. With regard to human elements of complex systems, traditional approaches to human reliability are not sufficient to attain surety. Consequently, an Organic Model has been developed to account for the organic properties exhibited by engineered systems that result from human involvement in those systems.

More Details

Corrosion detection in multi-layered rotocraft structures

Roach, Dennis P.; Walkington, Phillip D.

Rotorcraft structures do not readily lend themselves to quantifiable inspection methods due to airframe construction techniques. Periodic visual inspections are a common practice for detecting corrosion. Unfortunately, when the telltale signs of corrosion appear visually, extensive repair or refurbishment is required. There is a need to nondestructively evaluate airframe structures in order to recognize and quantify corrosion before visual indications are present. Nondestructive evaluations of rotorcraft airframes face inherent problems different from those of the fixed wing industry. Most rotorcraft lap joints are very narrow, contain raised fastener heads, may possess distortion, and consist of thinner gage materials ({approximately}0.012--0.125 inches). In addition the structures involve stack-ups of two and three layers of thin gage skins that are separated by sealant of varying thickness. Industry lacks the necessary data techniques, and experience to adequately perform routine corrosion inspection of rotorcraft. In order to address these problems, a program is currently underway to validate the use of eddy current inspection on specific rotorcraft lap joints. Probability of detection (POD) specimens have been produced that simulate two lap joint configurations on a model TH-57/206 helicopter. The FAA's Airworthiness Assurance Center (AANC) at Sandia Labs and Bell Helicopter have applied single and dual frequency eddy current (EC) techniques to these test specimens. The test results showed enough promise to justify beta site testing of the eddy current methods evolved in this study. The technique allows users to distinguish between corrosion signals and those caused by varying gaps between the assembly of skins. Specific structural joints were defined as prime corrosion areas and a series of corrosion specimens were produced with 5--20% corrosion distributed among the layers of each joint. Complete helicopter test beds were used to validate the laboratory findings. This paper will present the laboratory and field results that quantify the EC technique's corrosion detection performance. Plans for beta site testing, adoption of the new inspection procedure into routine rotorcraft maintenance, and NDI training issues will also be discussed.

More Details

Scalable rendering on PC clusters

Wylie, Brian N.; Lewis, Vasily; Shirley, David N.; Pavlakos, Constantine

This case study presents initial results from research targeted at the development of cost-effective scalable visualization and rendering technologies. The implementations of two 3D graphics libraries based on the popular sort-last and sort-middle parallel rendering techniques are discussed. An important goal of these implementations is to provide scalable rendering capability for extremely large datasets (>> 5 million polygons). Applications can use these libraries for either run-time visualization, by linking to an existing parallel simulation, or for traditional post-processing by linking to an interactive display program. The use of parallel, hardware-accelerated rendering on commodity hardware is leveraged to achieve high performance. Current performance results show that, using current hardware (a small 16-node cluster), they can utilize up to 85% of the aggregate graphics performance and achieve rendering rates in excess of 20 million polygons/second using OpenGL{reg_sign} with lighting, Gouraud shading, and individually specified triangles (not t-stripped).

More Details

Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

Hjalmarson, Harold P.; Muyshondt, Arnoldo

To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p-n junctions was developed by Isaque et al. They used a more complete ambipolar transport equation, which included the dependencies of the transport parameters (ambipolar diffusion constant, mobility, and recombination rate) on the excess minority carrier concentration. The expression used for the recombination rate was that of Shockley-Reed-Hall (SRH) recombination which is dominant for low to mid-level radiation intensities. However, at higher intensities, Auger recombination becomes important eventually dominant. The complete ambipolar transport equation including the complicated dependence of transport parameters on the radiation intensity, cannot be solved analytically. This solution is obtained for each of the regimes where a given recombination mechanism dominates, and then by joining these solutions using appropriate smoothing functions. This approach allows them to develop a BJT model accounting for the photoelectric effect of the ionizing radiation that can be implemented in SPICE.

More Details

Correlation of chemical and mechanical property changes during oxidative degradation of neoprene

Polymer Degradation and Stability

Celina, Mathew C.

The thermal degradation of a commercial, stabilized, unfilled neoprene (chloroprene) rubber was investigated at temperatures up to 140 °C. The degradation of this material is dominated by oxidation rather than dehydrochlorination. Important heterogeneous oxidation effects were observed at the various temperatures investigated using infrared micro-spectroscopy and modulus profiling. Intensive degradation-related spectral changes in the IR occurred in the conjugated carbonyl and hydroxyl regions. Quantitative analysis revealed some differences in the development of the IR oxidation profiles, particularly towards the sample surface. These chemical degradation profiles were compared with modulus profiles (mechanical properties). It is concluded that the profile development is fundamentally described by a diffusion-limited autoxidation mechanism. Oxygen consumption measurements showed that the oxidation rates display non-Arrhenius behavior (curvature) at low temperatures. The current results, when compared to those of a previously studied, clay-filled commercial neoprene formulation, indicate that the clay filler acts as an antioxidant, but only at low temperatures.

More Details

A note on the transition from coupled plasticity and damage to decohesion in the evolution of solder failure

Journal of Applied Mechanics

Fang, H.E.

A key issue of solder joint reliability is joint failure due to thermomechanical fatigue (TMF). TMF is caused by different coefficients of thermal expansion (CTEs) of the materials in an electronic package, combined with changes in the ambient temperature. Different CTEs result in cyclical strain in the assembly, and this strain is concentrated almost entirely in the solder because it is the most deformable portion of the package. Since solder alloy is at a significant fraction of its melting point even at room temperature, the cyclical strain enhances mass diffusion and causes dramatic changes in the alloy microstructure over time. As the microstructure changes and becomes coarser, the solder alloy weakens and eventually microcracks nucleate and grow in the joint, leading to component failure. the failure of solder joints is difficult to detect due to the inert nature of the electrical system. If the system is not on for extended periods then failures can not be observed. Therefore it is important to develop an advanced predictive capability which allows scientists and engineers to predict solder degradation and identify reliability problems in aging electronics early.

More Details

Simulation of Npn and Pnp AlGaN/GaN heterojunction bipolar transistors performances: Limiting factors and optimum design

IEEE Transactions on Electron Devices

Chang, Ping-Chih; Han, J.; Shul, Randy J.; Baca, Albert G.

The performance capabilities of Npn and Pnp AlGaN/GaN heterojunction bipolar transistors have been investigated by using a drift-diffusion transport model. Numerical results have been employed to study the effect of the p-type Mg doping and its incomplete ionization on device performance. The high base resistance induced by the deep acceptor level is found to be the cause of limited current gain values for Npn devices. Several computation approaches have been considered to improve their performance. Reasonable improvement of the DC current gain {beta} is observed by realistically reducing the base thickness in accordance with processing limitations. Base transport enhancement is also predicted by the introduction of a quasi-electric field in the base. The impact of the base resistivity on high-frequency characteristics is investigated for Npn AlGaN/GaN devices. Optimized predictions with maximum oscillation frequency value as high as f{sub MAX} = 20 GHz and a unilateral power gain--U = 25 dB make this bipolar GaN-based technology compatible with communication applications. Simulation results reveal that the restricted amount of free carriers from the p-doped emitter limits Pnp's DC performances operating in common emitter configuration. A preliminary analysis of r.f. characteristics for the Pnp counterpart indicates limited performance mainly caused by the degraded hole mobility.

More Details

Effect of morphology of hydrophobic surfaces on cavitation kinetics

Journal of Chemical Physics

Leung, Kevin

Cavitation has been suggested to be a possible source of long range interactions between mesoscopic hydrophobic surfaces. While evaporation is predicted by thermodynamics, little is known about its kinetics. Glauber dynamics Monte Carlo simulations of a lattice gas close to liquid-gas coexistence and confined between partially drying surfaces are used to model the effect of water confinement on the dynamics of surface-induced phase transition. Specifically, they examine how kinetics of induced evaporation change as the texture of hydrophobic surfaces is varied. Evaporation rates are considerably slowed with relatively small amount of hydrophilic coverage. However, the distribution of hydrophilic patches is found to be crucial, with the homogeneous one being much more effective in slowing the formation of vapor tubes which triggers the evaporation process. They estimate the free energy barrier of vapor tube formation via transition state theory, using a constrained forward-backward umbrella sampling technique applied to the metastable, confined liquid. Furthermore, to relate simulation rates to experimental ones, they perform simulations using the mass-conserving Kawasaki algorithm. They predict evaporation time scales that range from hundreds of picoseconds in the case of mesoscopic surfaces {approximately} 10{sup 4} nm{sup 2} to tens of nanoseconds for smaller surfaces {approximately} 40 nm{sup 2}, when the two surfaces are {approximately} 10 solvent layers apart. The present study demonstrates that cavitation is kinetically viable in real systems and should be considered in studies of processes at confined geometry.

More Details

Demonstration of highly efficient waveguiding in a photonic crystal slab at x=1.5{micro}m wavelengths

Optics Letters

Lin, Shawn-Yu; Chow, Kai-Cheung

Highly efficient transmission of 1.5 {micro}m light in a two-dimensional (2D) photonic crystal slab waveguide is experimentally demonstrated. The light wave is shown to be guided along a triple-line defect formed within a 2D crystal and vertically by a strong index-guiding mechanism. At certain wavelength ranges, a complete transmission is observed, suggesting a lossless guiding along this photonic 1D conduction channel.

More Details

III-Sb (001) growth surfaces: Structure and island nucleation

Physical Review Letters

Modine, Normand A.

The authors have determined the reconstructions present on AlSb and GaSb(001) under conditions typical for device growth by molecular beam epitaxy. Within the range of Sb flux and temperature where the diffraction pattern is nominally (1 x 3), three distinct (4 x 3) reconstructions actually occur. The three structures are different than those previously proposed for these growth conditions, with two incorporating mixed III-V dimers on the surface. The presence of these hetero-dimers in the top Sb layer leads to an island nucleation and growth mechanism fundamentally different than for other III-V systems.

More Details

Mechanical properties and shear failure surfaces of two alumina powders in triaxial compression

Journal of Materials Science

Zeuch, David H.; Grazier, John M.; Arguello, Jose G.; Ewsuk, Kevin G.

In the manufacture of ceramic components, near-net-shape parts are commonly formed by uniaxially pressing granulated powders in rigid dies. Density gradients that are introduced into a powder compact during press-forming often increase the cost of manufacturing, and can degrade the performance and reliability of the finished part. Finite element method (FEM) modeling can be used to predict powder compaction response, and can provide insight into the causes of density gradients in green powder compacts; however, accurate numerical simulations require accurate material properties and realistic constitutive laws. To support an effort to implement an advanced cap plasticity model within the finite element framework to realistically simulate powder compaction, the authors have undertaken a project to directly measure as many of the requisite powder properties for modeling as possible. A soil mechanics approach has been refined and used to measure the pressure dependent properties of ceramic powders up to 68.9 MPa (10,000 psi). Due to the large strains associated with compacting low bulk density ceramic powders, a two-stage process was developed to accurately determine the pressure-density relationship of a ceramic powder in hydrostatic compression, and the properties of that same powder compact under deviatoric loading at the same specific pressures. Using this approach, the seven parameters that are required for application of a modified Drucker-Prager cap plasticity model were determined directly. The details of the experimental techniques used to obtain the modeling parameters and the results for two different granulated alumina powders are presented.

More Details
Results 91151–91175 of 99,299
Results 91151–91175 of 99,299