Publications

Results 91126–91150 of 99,299

Search results

Jump to search filters

Phase structure within a fracture network beneath a surface pond: Field experiment

Watger Resources Research

Glass Jr., Robert J.

The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregular wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.

More Details

Substituent effects on the sol-gel chemistry of organotrialkoxysilanes

Chemistry of Materials

Loy, Douglas A.; Baugher, Colleen R.; Schneider, Duane A.; Rahimian, Kamyar R.

Silsesquioxanes have been the subject of intensive study in the past and are becoming important again as a vehicle for introducing organic functionalities into hybrid organic-inorganic materials through sol-gel processing. Depending on the application, the target hybrid material may be required to be a highly cross-linked, insoluble gel or a soluble polymer that can be cast as a thin film or coating. The former has applications such as catalyst supports and separations media; the latter is an economically important method for surface modification or compatiblization for applying adhesives or introducing fillers. Polysilsesquioxanes are readily prepared through the hydrolysis and condensation of organotrialkoxysilanes, though organotriaminosilane and organotrihalosilane monomers can also be used. This paper explores the kinetics of the preparation route.

More Details

Ni-Al composite coatings: Diffusion analysis and coating lifetime estimation

Acta Materialia

Susan, Donald F.

The interdiffusion of Ni matrix/Al particle composite coatings and nickel substrates was studied using electron probe microanalysis (EPMA) and a one-dimensional diffusion model. The initial coating microstructure was a two-phase mixture of y(Ni) and y{prime}(Ni{sub 3}Al). The coating/substrate assemblies were aged at 800 to 1,100 C for times up to 2,000 hours. It was found that aluminum losses to the substrate are significant at 1,000 C and above. The experimental results for the diffusion of Al into the substrate were compared to model predictions based on a diffusion equation for a finite layer on an infinite substrate. Using combined experimental and model results, the effects of temperature and coating thickness were determined and a rationale was developed for coating lifetime prediction.

More Details

Measurement of temperature distributions in large pool fires with the use of directional flame thermometers

Koski, Jorman A.

Temperatures inside the flame zone of large regulatory pool fires measured during tests of radioactive materials packages vary widely with both time and position. Measurements made with several Directional Flame Thermometers, in which a thermocouple is attached to a thin metal sheet that quickly approaches flame temperatures, have been used to construct fire temperature distributions and cumulative probability distributions. As an aid to computer simulations of these large fires, these distributions are presented. The distributions are constructed by sorting fire temperature data into bins 10 C wide. A typical fire temperature distribution curve has a gradual increase starting at about 600 C, with the number of observations increasing to a peak near 1000 C, followed by an abrupt decrease in frequency, with no temperatures observed above 1200 C.

More Details

Shock certification of replacement subsystems and components in the presence of uncertainty

Dohner, Jeffrey L.; Lauffer, James P.

In this paper a methodology for analytically estimating the response of replacement components in a system subjected to worst-case hostile shocks is presented. This methodology does not require the use of system testing but uses previously compiled shock data and inverse dynamic analysis to estimate component shock response. In the past component shock responses were determined from numerous system tests; however, with limitations on system testing, an alternate methodology for determining component response is required. Such a methodology is discussed. This methodology is mathematically complex in that two inverse problems, and a forward problem, must be solved for a permutation of models representing variabilities in dynamics. Two conclusions were deduced as a result of this work. First, the present methodology produces overly conservative results. Second, the specification of system variability is critical to the prediction of component response.

More Details

Aging analyses of aircraft wire insulation

Gillen, Kenneth T.; Clough, Roger L.; Celina, Mathew C.; Aubert, James H.; Malone, G.M.

Over the past two decades, Sandia has developed a variety of specialized analytical techniques for evaluating the long-term aging and stability of cable insulation and other related materials. These techniques have been applied to cable reliability studies involving numerous insulation types and environmental factors. This work has allowed the monitoring of the occurrence and progression of cable material deterioration in application environments, and has provided insights into material degradation mechanisms. It has also allowed development of more reliable lifetime prediction methodologies. As a part of the FAA program for intrusive inspection of aircraft wiring, they are beginning to apply a battery of techniques to assessing the condition of cable specimens removed from retired aircraft. It is anticipated that in a future part of this program, they may employ these techniques in conjunction with accelerated aging methodologies and models that the authros have developed and employed in the past to predict cable lifetimes. The types of materials to be assessed include 5 different wire types: polyimide, PVC/Glass/Nylon, extruded XL-polyalkene/PVDF, Poly-X, and XL-ETFE. This presentation provides a brief overview of the main techniques that will be employed in assessing the state of health of aircraft wire insulation. The discussion will be illustrated with data from their prior cable aging studies, highlighting the methods used and their important conclusions. A few of the techniques that they employ are widely used in aging studies on polymers, but others are unique to Sandia. All of their techniques are non-proprietary, and maybe of interest for use by others in terms of application to aircraft wiring analysis. At the end of this report is a list showing some leading references to papers that have been published in the open literature which provide more detailed information on the analytical techniques for elastomer aging studies. The first step in the investigation of aircraft wiring is to evaluate the applicability of their various techniques to aircraft cables, after which they expect to identify a limited subset of techniques which are appropriate for each of the major aircraft wiring types. The techniques of initial interest in the studies of aging aircraft wire are as follows: optical microscopy; mandrel bend test; tensile test/elongation at break; density measurements; modulus profiling/(spatially-resolved micro-hardness); oxygen induction time/oxygen induction temperature (by differential scanning calorimetry); solvent-swelling/gel fraction; infrared spectroscopy (with chemical derivatization as warranted); chemiluminescence; thermo-oxidative wear-out assessment; The first two techniques are the simplest and quickest to apply; those further down the list tend to be more information rich and in some cases more sensitive, but also generally more specialized and more time consuming to run. Accordingly, the procedure will be to apply the simplest tests for purposes of preliminary screening of large numbers of samples. For any given material type, it can be expected that only a limited number of the other techniques will prove to be useful, and therefore, the more specialized techniques will be used on a limited number of selected samples. Samples of aircraft wiring have begun to be released to the authors in late April; they include in this report some limited and preliminary data on these materials.

More Details

Rapid prototyping of patterned functional nanostructures

Nature

Brinker, C.J.; Reed, Scott; Baer, Thomas A.; Schunk, Peter R.

Living systems exhibit form and function on multiple length scales and at multiple locations. In order to mimic such natural structures, it is necessary to develop efficient strategies for assembling hierarchical materials. Conventional photolithography, although ubiquitous in the fabrication of microelectronics and microelectromechanical systems, is impractical for defining feature sizes below 0.1 micrometres and poorly suited to pattern chemical functionality. Recently, so-called 'soft' lithographic approaches have been combined with surfactant and particulate templating procedures to create materials with multiple levels of structural order. But the materials thus formed have been limited primarily to oxides with no specific functionality, and the associated processing times have ranged from hours to days. Here, using a self-assembling 'ink', we combine silica-surfactant self-assembly with three rapid printing procedures-pen lithography, ink-jet printing, and dip-coating of patterned self-assembled monolayers-to form functional, hierarchically organized structures in seconds. The rapid-prototyping procedures we describe are simple, employ readily available equipment, and provide a link between computer-aided design and self-assembled nanostructures. We expect that the ability to form arbitrary functional designs on arbitrary surfaces will be of practical importance for directly writing sensor arrays and fluidic or photonic systems.

More Details

Effect of initial seed and number of samples on simple-random and Latin-Hypercube Monte Carlo probabilities (confidence interval considerations)

Romero, Vicente J.

In order to devise an algorithm for autonomously terminating Monte Carlo sampling when sufficiently small and reliable confidence intervals (CI) are achieved on calculated probabilities, the behavior of CI estimators must be characterized. This knowledge is also required in comparing the accuracy of other probability estimation techniques to Monte Carlo results. Based on 100 trials in a hypothesis test, estimated 95% CI from classical approximate CI theory are empirically examined to determine if they behave as true 95% CI over spectrums of probabilities (population proportions) ranging from 0.001 to 0.99 in a test problem. Tests are conducted for population sizes of 500 and 10,000 samples where applicable. Significant differences between true and estimated 95% CI are found to occur at probabilities between 0.1 and 0.9, such that estimated 95% CI can be rejected as not being true 95% CI at less than a 40% chance of incorrect rejection. With regard to Latin Hypercube sampling (LHS), though no general theory has been verified for accurately estimating LHS CI, recent numerical experiments on the test problem have found LHS to be conservatively over an order of magnitude more efficient than SRS for similar sized CI on probabilities ranging between 0.25 and 0.75. The efficiency advantage of LHS vanishes, however, as the probability extremes of 0 and 1 are approached.

More Details

Control of the RF waveform at the chuck of an industrial oxide-etch reactor

Jouranl of Vacuum Science and Technology

Miller, Paul A.

Radio frequency (rf) power is applied to the chuck of a high-density plasma reactor in order to extract ions and to control the energy of the ions used for the fabrication of microelectronic devices. In many cases, the temporal shape of the rf waveform largely determines the shape of the spectrum of those extracted ions, thereby strongly affecting feature evolution. Using auxiliary rf circuits the authors successfully made major changes to the rf potential waveform at the chuck of an Applied Materials 5300 HDP Omega reactor without affecting the normal functioning of the reactor's control systems. This work established the practical feasibility of techniques for modifying the ion energy distribution functions of industrial reactors.

More Details

Minority carrier diffusion, defects, and localization in InGaAsN with 2% nitrogen

Applied Physics Letters

Kurtz, S.R.; Allerman, A.A.; Seager, Carleton H.; Sieg, Robert M.; Jones, Eric D.

Electron and hole transport in compensated, InGaAsN ({approx} 2% N) are examined through Hall mobility, photoconductivity, and solar cell photoresponse measurements. Short minority carrier diffusion lengths, photoconductive-response spectra, and doping dependent, thermally activated Hall mobilities reveal a broad distribution of localized states. At this stage of development, lateral carrier transport appears to be limited by large scale (>> mean free path) material inhomogeneities, not a random alloy-induced mobility edge.

More Details

``Cats and Dogs'' disposition at Sandia: Last of the legacy materials

Strong, Warren R.; Jackson, John L.

Over the past 12 months, Sandia National Laboratories, New Mexico (SNL/NM), has successfully conducted an evaluation of its nuclear material holdings. As a result, approximately 46% of these holdings (36% by mass) have been reclassified as no defined use (NDU). Reclassification as NDU allows Sandia to determine the final disposition of a significant percentage of its legacy nuclear material. Disposition will begin some time in mid CY2000. This reclassification and the proposed disposition of the material has resulted in an extensive coordination effort lead by the Nuclear Materials Management Team (NMMT), which includes the nuclear material owners, the Radioactive Waste/Nuclear Material Disposition Department (7135), and DOE Albuquerque Operations Office. The process of identifying and reclassifying the cats and dogs or miscellaneous lots of nuclear material has also presented a number of important lessons learned for other sites in the DOE complex.

More Details

Protective coatings for concrete

Cygan, Randall T.; Brinker, C.J.

The new two-layer protective coating developed for monuments constructed of limestone or marble was applied to highway cement and to tobermorite, a component of cement, and tested in batch dissolution tests. The goal was to determine the suitability of the protective coating in retarding the weathering rate of concrete construction. The two-layer coating consists of an inner layer of aminoethylaminopropylsilane (AEAPS) applied as a 25% solution in methanol and an outer layer of A2** sol-gel. In previous work, this product when applied to calcite powders, had resulted in a lowering of the rate of dissolution by a factor of ten and was shown through molecular modeling to bind strongly to the calcite surface, but not too strongly so as to accelerate dissolution. Batch dissolution tests at 22 C of coated and uncoated tobermorite (1.1 nm phase) and powdered cement from Gibson Blvd. in Albuquerque indicated that the coating exhibits some protective behavior, at least on short time scales. However, the data suggest that the outer layer of sol-gel dissolves in the high-pH environment of the closed system of cement plus water. Calculated binding configuration and energy of AEAPS to the tobermorite surface suggests that AEAPS is well-suited as the inner layer binder for protecting tobermorite.

More Details

Continuum-Based FEM Modeling of Ceramic Powder Compaction Using a Cap-Plasticity Constitutive Model

KONA Journal

Arguello, Jose G.; Fossum, Arlo F.; Zeuch, David H.; Ewsuk, Kevin G.

Software has been developed and extended to allow finite element (FE) modeling of ceramic powder compaction using a cap-plasticity constitutive model. The underlying, general-purpose FE software can be used to model even the most complex three-dimensional (3D) geometries envisioned. Additionally, specialized software has been developed within this framework to address a general subclass of axisymmetric compacts that are common in industry. The expertise required to build the input deck, run the FE code, and post-process the results for this subclass of compacts is embedded within the specialized software. The user simply responds to a series of prompts, evaluates the quality of the FE mesh that is generated, and analyzes the graphical results that are produced. The specialized software allows users with little or no FE expertise to benefit from the tremendous power and insight that FE analysis can bring to the design cycle. The more general underlying software provides complete flexibility to model more complicated geometries and processes of interest to ceramic component manufacturers but requires significantly more user interaction and expertise.

More Details

A protection profile for TASE.2

Carlson, Rolf E.; Beaver, Cheryl L.

This document represents the development of a protection profile (PP) for the IEC (International Electrotechnical Commission) protocol TASE.2 (Tele-control Application Service Element.2). A protection profile states assumptions about the TOE (Target of Evaluation), identifies threats to the TOE based on the assumptions, gives security goals to counter the threats, and finally identifies security functions to satisfy the security goals. Developing protection profiles for each protocol is a significant step towards developing measurable security for electric power automation systems. As an extension of the PP, the authors offer a generalization to any protocol at the evaluation assurance level (EAL) 2.

More Details

A naturalistic decision making model for simulated human combatants

Hunter, Keith O.; Hart, William E.; Forsythe, James C.

The authors describe a naturalistic behavioral model for the simulation of small unit combat. This model, Klein's recognition-primed decision making (RPD) model, is driven by situational awareness rather than a rational process of selecting from a set of action options. They argue that simulated combatants modeled with RPD will have more flexible and realistic responses to a broad range of small-scale combat scenarios. Furthermore, they note that the predictability of a simulation using an RPD framework can be easily controlled to provide multiple evaluations of a given combat scenario. Finally, they discuss computational issues for building an RPD-based behavior engine for fully automated combatants in small conflict scenarios, which are being investigated within Sandia's Next Generation Site Security project.

More Details

Investigation of the impact of cleaning on the adhesive bond and the process implications

Emerson, John A.; Guess, Tommy R.; Adkins, Carol L.J.; Curro, John G.; Reedy, Earl D.; Lopez, Edwin P.; Lemke, Paul A.

While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

More Details

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

Ruby, Douglas S.

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

More Details

Composite Resonator Surface Emitting Lasers

Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.; Allerman, A.A.; Geib, Kent M.

The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

More Details

A geometrically nonlinear shell element for hygrothermorheologically simple linear viscoelastic composites

AIAA Journal

Hammerand, Daniel C.

A triangular flat shell element for large deformation analysis of linear viscoelastic laminated composites is presented. Hygrothermorheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Recurrence relations are developed and implemented for the evaluation of the viscoelastic memory loads. The nonlinear deformation process is computed using an incremental/iterative approach with the Newton-Raphson Method used to find the incremental displacements in each step. The presented numerical examples consider the large deformation and stability of linear viscoelastic structures under deformation-independent mechanical loads, deformation-dependent pressure loads, and thermal loads. Unlike elastic structures that have a single critical load value associated with a given snapping of buckling instability phenomenon, viscoelastic structures will usually exhibit a particular instability for a range of applied loads over a range of critical times. Both creep buckling and snap-through examples are presented here. In some cases, viscoelastic results are also obtained using the quasielastic method in which load-history effects are ignored, and time-varying viscoelastic properties are simply used in a series of elastic problems. The presented numerical examples demonstrate the capability and accuracy of the formulation.

More Details

Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

The Journal of Physical Chemistry B

Lang, David P.; Alam, Todd M.; Bencoe, Denise N.

Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

More Details

Calibration-free electrical conductivity measurements for highly conductive slags

Metallurgical Transactions B

Van Den Avyle, James A.; Melgaard, David K.

This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

More Details

Absolute intensities of the vacuum ultraviolet spectra in oxide etch plasma processing discharges

Journal of Vacuum Science and Technology

Woodworth, Joseph R.; Riley, Merle E.; Amatucci, Vincent A.; Hamilton, Thomas W.; Aragon, Ben P.

In this paper, the authors report the absolute intensities of ultraviolet light between 4.9 eV and 24 eV ( 250 nm to 50 mn ) striking a silicon wafer in a number of oxide-etch processing discharges. The emphasis is on photons with energies greater than 8.8 eV, which have enough energy to damage SiO{sub 2}. These discharges were in an inductively-driven Gaseous Electronics Conference reference cell which had been modified to more closely resemble commercial etching tools. Comparisons of measurements made through a side port in the cell and through a hole in the wafer indicate that the VUV light in these discharges is strongly trapped. For the pure halocarbon gases examined in these experiments (C{sub 2}F{sub 6}, CHF{sub 3}, C{sub 4}F{sub 8}), the fluxes of VUV photons to the wafer varied from 1 x 10{sup 15} to 3 x 10{sup 15} photons/cm{sup 2} sec or equivalently from 1.5 to 5 mW/cm{sup 2}. These measurements imply that 0.1% to 0.3% of the rf source power to these discharges ends up hitting the wafer as VUV photons for the typical 20 mT, 200 W rf discharges. For typical ashing discharges containing pure oxygen, the VUV intensities are slightly higher--about 8 mW/cm{sup 2} . As argon or hydrogen diluents are added to the fluorocarbon gases, the VUV intensities increase dramatically, with a 10/10/10 mixture of Ar/C{sub 2}F{sub 6}/H{sub 2} yielding VUV fluxes on the wafer 26 mW/cm{sup 2} and pure argon discharges yielding 52 mW/cm{sup 2} . Adding an rf bias to the wafer had only a small effect on the VUV observed through a side-port of the GEC cell.

More Details
Results 91126–91150 of 99,299
Results 91126–91150 of 99,299