Publications

Results 95101–95200 of 99,299

Search results

Jump to search filters

Use of probabilistic methods for analysis of cost and duration uncertainties in a decision analysis framework

High Level Radioactive Waste Management - Proceedings of the Annual International Conference

Boak, D.M.; Painton, L.

Probabilistic forecasting techniques can be used in the treatment of uncertainties in the cost and duration of programmatic alternatives on risk and performance assessment projects. Where significant uncertainties exist and where programmatic decisions must be made despite existing uncertainties, probabilistic techniques may yield important insights into decision options, especially when used in a decision analysis framework and when properly balanced with deterministic analyses. An example application of probabilistic forecasting is presented and described.

More Details

High-Q photonic band gap resonant cavities: from mm-wave to optical regime

Proceedings of SPIE - The International Society for Optical Engineering

Lin, Shawn-Yu

We have realized a new class of high-Q resonant cavity using two-dimensional photonic bandgap (PBG) structures and showed that its Q-value can be as high as approximately 23,000 in the mm-wave regime. We further show that its modal properties, such as the resonant frequency, modal linewidth and number of modes, can be tuned by varying the cavity size. In addition, we present a new nano-fabrication technique for constructing PBG resonant cavities in the near infrared and visible spectral regime.

More Details

Motion planning of a robotic arm on a wheeled vehicle on a rugged terrain

ASCE Specialty Conference, Proceedings

Hwang, Yong K.

This paper presents a set of motion planners for an exploration vehicle on a simulated rugged terrain. The vehicle has four wheels for its movement and a robotic arm mounted on the vehicle for object manipulation. Given a target point to reach with the hand of the arm, our planners first compute a path for the vehicle to the vicinity of the target, then compute an optimal vehicle position from which the arm can reach the target point, and then plans a path for the arm to reach the target. The vehicle path is planned in two stages. A rough path is planned considering only global features of the terrain, and the path is modified by a local planner to avoid more detailed features of the terrain. The planners are expected to increase the autonomy of robots and improve the efficiencies of exploration missions.

More Details

Highly uniform and reproducible vertical-cavity surface-emitting lasers grown by metallorganic chemical vapor deposition

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Choquette, Kent D.

Metallorganic chemical vapor deposition (MOCVD) technology is increasingly recognised as a superior platform for growth of vertical-cavity surface-emitting lasers (VCELs) because of its high throughput, low surface defect density, continuous compositional grading control, and the flexibility for materials and dopant choices. In this paper, it is shown that it is also capable of extremely high wafer uniformity and run-to-run reproducibility.

More Details

Nanosecond, pulsed, frequency-modulated optical parametric oscillator

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Armstrong, Darrell J.

Frequency modulation is demonstrated in a ring-cavity KTP OPO seeded by frequency-modulated Ti:SAP light. The singly resonant OPO is pumped by a single-longitudinal-mode 532-nm Nd:YAG light, and the 800-nm signal seed is modulated at 3.7 GHz to match the OPO cavity's free spectral range. A comparison is presented of OPO operation with FM and AM seeds that demonstrates the dramatic difference in spectral properties and pulse profiles for the two modulation types. FM modulated absorption measurements made using FM OPO is also demonstrated.

More Details

Geomechanical numerical simulations of complex geologic structures

2nd North American Rock Mechanics Symposium, NARM 1996

Arguello, J.G.; Stone, C.M.; Lorenz, J.C.

The ability to predict the mechanical response of rock in three dimensions over the spatial and time scales of geologic interest would give the oil and gas industry the ability to reduce risk on prospects, improve pre-project initial reserve estimates, and lower operating costs. A program has recently been initiated, under the auspices the Advanced Computational Technology Initiative (ACTI), to achieve such a computational technology breakthrough by adapting the unique advanced quasistatic finite element technology developed by Sandia to the mechanics applications important to exploration and production activities within the oil and gas industry. As a pre-cursor to that program, in an effort to evaluate the feasibility of the approach, several complex geologic structures of interest were analyzed with the existing two-dimensional quasistatic finite element code, SANTOS, developed at Sandia. Some examples will be presented and discussed in this paper.

More Details

High temperature surface degradation of III-V nitrides

Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures

Zolper, J.C.

The surface stoichiometry, surface morphology, and electrical conductivity of AlN, GaN, InN, InGaN, and InAlN were examined at rapid thermal annealing temperatures up to 1150 °C. The sheet resistance of the AlN dropped steadily with annealing, but the surface showed signs of roughening only above 1000 °C. Auger electron spectroscopy (AES) analysis showed little change in the surface stoichiometry even at 1150 °C. GaN root mean square (rms) surface roughness showed an overall improvement with annealing, but the surface became pitted at 1000 °C, at which point the sheet resistance also dropped by several orders of magnitude, and AES confirmed a loss of N from the surface. The InN surface had roughened considerably even at 650 °C, and scanning electron microscopy showed significant degradation. In contrast to the binary nitrides, the sheet resistance of InAlN was found to increase by ∼102 from the as grown value (3.2×10-3 Ω cm) after annealing at 800 °C and then remain constant up to 1000 °C, while that of InGaN increased by two orders of magnitude between 700 and 900 °C. The rms roughness increased above 800 and 700 °C, respectively, for InAlN and InGaN samples. In droplets began to form on the surface at 900 °C for InAlN and at 800 °C for InGaN, and then evaporate at 1000 °C, leaving pits. AES analysis showed a decrease in the N concentration in the top 500 Å of the sample for annealing ≥800 °C in both materials. © 1996 American Vacuum Society.

More Details

Photovoltaic lighting system performance

Conference Record of the IEEE Photovoltaic Specialists Conference

Hund, Thomas D.

The performance of 21 PV-powered low pressure sodium lighting systems on a multi-use pathway has been documented in this paper. Specific areas for evaluation include the constant voltage and on/off PV charge controllers, flooded deep-cycle lead-antimony and valve regulated lead-acid (VRLA) gel batteries, low pressure sodium ballasts and lights, and vandal resistant PV modules. The PV lighting system lessons learned and maintenance intervals have been documented over the past 2.5-years. The above performance data has shown that with careful hardware selection, installation, and maintenance intervals the PV lighting systems will operate reliably.

More Details

Synthesis of periodic mesoporous silica thin films

Materials Research Society Symposium - Proceedings

Anderson, M.T.

We have synthesized periodic mesoporous silica thin films (PMSTF) from homogeneous solutions. To synthesize the films a thin layer of a pH = 7 micellar coating solution that contains TMOS is dip- or spin-coated onto silicon wafers, borosilicate glass, or quartz substrates. Ammonia gas is diffused into the solution and causes rapid hydrolysis and condensation of the TMOS and the formation of periodic mesoporous thin films within approximately 10 seconds. The combination of homogeneous solutions and rapid product formation maximizes the concentration of desired product and provides a controlled, predictable microstructure. The films have been made continuous and crack-free by optimizing initial silica concentration and film thickness.

More Details

Techniques to obtain orbital debris encounter speeds in the laboratory

Proceedings of the International Conference on Engineering, Construction, and Operations in Space

Chhabildas, L.C.

Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences such as orbital-debris impact on a debris shield. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques used to extend the launch capabilities of a two-stage light gas gun to 16 km/s are described. It is anticipated that this technology will be useful in testing, evaluating, and design of various debris shields proposed for use with many different spacecrafts before deployment.

More Details

Preparation of microporous films with sub nanometer pores and their characterization using stress and FTIR measurements

Materials Research Society Symposium - Proceedings

Samuel, J.

We have used a novel technique, measurement of stress isotherms in microporous thin films, as a means of characterizing porosity. The stress measurement was carried out by applying sol-gel thin films on a thin silicon substrate and monitoring the curvature of the substrate under a controlled atmosphere of various vapors. The magnitude of macroscopic bending stress developed in microporous films depends on the relative pressure and molar volume of the adsorbate and reaches a value of 180 MPa for a relative vapor pressure, P/Po = 0.001, of methanol. By using a series of molecules, and observing both the magnitude and the kinetics of stress development while changing the relative pressure, we have determined the pore size of microporous thin films. FTIR measurements were used to acquire adsorption isotherms and to compare pore emptying to stress development, about 80% of the change in stress takes place with no measurable change in the amount adsorbed. We show that for sol-gel films, pore diameters can be controlled in the range of 5-8 angstroms by `solvent templating'.

More Details

ECR etching of GaP, GaAs, InP, and InGaAs in Cl2/Ar, Cl2/N2, BCl3/Ar, and BCl3/N2

Materials Research Society Symposium - Proceedings

Shul, Randy J.

Electron cyclotron resonance (ECR) etching of GaP, GaAs, InP, and InGaAs are reported as a function of percent chlorine-containing gas for Cl2/Ar, Cl2/N2, BCl3/Ar, and BCl3/N2 plasma chemistries. GaAs and GaP etch rates were faster than InP and InGaAs, independent of plasma chemistry due to the low volatility of the InClx etch products. GaAs and GaP etch rates increased as %Cl2 was increased for Cl2/Ar and Cl2/N2 plasmas. The GaAs and GaP etch rates were much slower in BCl3-based plasmas due to lower concentrations of reactive Cl, however enhanced etch rates were observed in BCl3/N2 at 75% BCl3. Smooth etched surfaces were obtained over a wide range of plasma chemistries.

More Details

Complementary HFET technology for low-power mixed-mode applications

Materials Research Society Symposium - Proceedings

Baca, Albert G.

Development of a complementary heterostructure field effect transistor (CHFET) technology for low-power, mixed-mode digital-microwave applications is presented. An earlier digital CHFET technology with independently optimizable transistors which operated with 319 ps loaded gate delays at 8.9 fJ is reviewed. Then work demonstrating the applicability of the digital nJFET device as a low-power microwave transistor in a hybrid microwave amplifier without any modification to the digital process is presented. A narrow band amplifier with a 0.7 × 100 μm nJFET as the active element was designed, constructed, and tested. At 1 mW operating power, the amplifier showed 9.7 dB of gain at 2.15 GHz and a minimum noise figure of 2.5 dB. In addition, next generation CHFET transistors with sub 0.5 μm gate lengths were developed. Cutoff frequencies, ft of 49 GHz and 11.5 GHz were achieved for n- and p-channel FETs with 0.3 and 0.4 μm gates, respectively. These FETs will enable both digital and microwave circuits with enhanced performance.

More Details

A model of meteoroid atmospheric entry with implications for the NEO hazard and the impact of comet shoemaker-levy 9 on jupiter

Engineering, Construction, and Operations in Space V

Crawford, David A.

A new semi-Analytical model describing the entry and deformation of meteoroids entering planetary atmospheres has been developed and calibrated against numerical simulations performed using the CTH shock-physics computational hydrocode. The model starts with the classical treatment of meteoroid ablation which is modified to include an explicit treatment of energy conservation during the ablative process. This is reconciled with terrestrial observations by modeling the formation of a vapor/debris layer (the visible bolide) surrounding the central meteoroid. A mechanical deformation model based on long-wavelength hydrodynamic instability growth is added and calibrated against numerical simulations performed with CTH. The analytical model provides initial conditions for numerical fireball simulations which are compared with observations of the Comet Shoemaker-Levy 9 impact on Jupiter and can be used to assess the terrestrial impact hazard. © 1996 American Society of Civil Engineers.

More Details

Many-body effects in a semiconductor microcavity laser: experiment and theory

Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series

Crawford, M.H.; Choquette, K.D.; Chow, W.W.; Schneider Jr., R.P.

This paper describes a study of the underlying physical mechanisms governing the threshold properties of a VCSEL. In particular, it theoretically and experimentally evaluates the mechanisms that effect the threshold properties as a function of emission wavelength. Other important issues, such as the dependence of the threshold properties on microcavity dimensions, we discussed.

More Details

Magnetotunneling absorption in double quantum wells

Superlattices and Microstructures

Lyo, Sungkwun K.

Tunneling absorption is calculated in weakly-coupled n-type asymmetric double quantum wells in an in-plane magnetic field using a linear response theory. Tunneling absorption of photons occurs between the ground sublevels of the quantum wells. We show that the absorption threshold, the resonance energy of absorption, and the linewidth depend sensitively on the magnetic field and the temperature. © 1996 Academic Press Limited.

More Details

Integrated decoupling capacitors using Pb(Zr,Ti)O3 thin films

Materials Research Society Symposium - Proceedings

Dimos, Duane B.

Thin-film decoupling capacitors based on ferroelectric (Pb,La)(Zr,Ti)O3 films are being developed for use in advanced packaging applications. The increased integration that can be achieved by replacing surface-mount capacitors should lead to decreased package volume and improved high-speed performance. For this application, chemical solution deposition is an appropriate fabrication technique since it is a low-cost, high-throughput process. The use of relatively thick Pt electrodes (approximately 1 μm) to minimize series resistance and inductance is a unique aspect to fabricating these devices. In addition, the important electrical properties are discussed, with particular emphasis on lifetime measurements, which suggest that resistance degradation will not be a severe limitation on device performance. Finally, some of the work being done to develop methods of integrating these thin-film capacitors with ICs and MCMs is presented.

More Details

RF magnetron sputter-deposition of La0.5Sr0.5CoO3//Pt composite electrodes for Pb(Zr,Ti)O3 thin film capacitors

Materials Research Society Symposium - Proceedings

Raymond, M.V.

La0.5Sr0.5CoO3 (LSCO) thin films have been deposited, using RF magnetron sputter-deposition for use as an electrode material for Pb(Zr,Ti)O3 (PZT) thin film capacitors. The effect of the O2:Ar sputter gas ratio during deposition, on the LSCO film properties was investigated. It was found that the resistivity of the LSCO films deposited at ambient temperature decreases as the O2:Ar ratio was increased for both the as-deposited and annealed films. In addition, it was found that thin overlayers of LSCO tend to stabilize the underlying Pt//Ti electrode structure during subsequent thermal processing. The LSCO//Pt//Ti composite electrode stack has a low resistivity and provides excellent fatigue performance for PZT capacitors. Furthermore, the LSCO//Pt//Ti electrode sheet resistance does not degrade with annealing temperature and the electrode does not display hillock formation. Possible mechanisms for the stabilization of the Pt//Ti electrode with LSCO overlayers will be discussed.

More Details

Viscosity of concentrated suspensions of sphere/rod mixtures

Chemical Engineering Communications

Mondy, Lisa A.

The relative viscosity of concentrated suspensions of mixtures of rodlike and spherical particles are measured by falling-ball rheometry. The suspensions are well mixed and homogeneous in the sense that the particles are well dispersed and the rods are randomly oriented. For a constant total volume fraction of solids, the addition of spheres to suspensions of rods results in large decrease in the relative viscosity of the suspension. In these experiments the length of the suspended rods is approximately 10 times the diameter of the suspended spheres. Due to this difference in the characteristic sizes of the two types of particles, the spheres may be considered as part of the suspending homogeneous continuum. A simple model based on this physical picture, after Farris [1968], is very successful in predicting the relative viscosity of the mixed suspensions.

More Details

Near-plastic threshold indentation and the residual stress in thin films

Materials Research Society Symposium - Proceedings

Houston, Jack E.

In recent studies, we used the Interfacial Force Microscope in a nanoindenter mode to survey the nanomechanical properties of Au films grown on various substrates. Quantitative tabulations of the indentation modulus and the maximum shear stress at the plastic threshold showed consistent values over individual samples but a wide variation from substrate to substrate. These values were compared with film properties such as the surface roughness, average grain size and interfacial adhesion and no correlation was found. However, in a subsequent analysis of the results, we found consistencies which support the integrity of the data and point to the fact that the results are sensitive to some property of the various film/substrate combinations. In the present paper, we discuss these consistencies and show recent measurements which strongly suggest that the property that is being probed is the residual stress in the films caused by their interaction with the substrate surfaces.

More Details

Space applications of the MITS electron-photon monte carlo transport code system

IEEE Transactions on Nuclear Science

Kensek, R.P.; Lorence, L.J.; Halbleib, J.A.; Morel, J.E.

The MITS multigroup/continuous-energy electron-photon Monte Carlo transport code system has matured to the point that it is capable of addressing more realistic three-dimensional adjoint applications. It is first employed to efficiently predict point doses as a function of source energy for simple threedimensional experimental geometries exposed to planar sources of monoenergetic electrons up to 4. 0 MeV due to simulated uniform isotropic fluences. Results are in very good agreement with experimental data. It is then used to efficiently simulate dose to a detector in a subsystem of a GPS satellite from the natural electron environment, employing a relatively complex model of the satellite. The capability for survivability analysis of space systems is demonstrated, and results are obtained with and without variance reduction. © 1996 IEEE.

More Details

Microscopic theory of gain in a group-III nitride strained quantum well laser

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Chow, Weng W.

The study of gain properties in group-III nitride quantum wells is complicated by several factors. In view of this, an approach is presented that involves a first-principles bandstructure calculation, the results of which are incorporated into a microscopic laser theory. The band structure calculation applies a density-functional method. This method provides a single analytical model for computing the group-II nitride material properties, thus ensuring consistency in the values for the different bandstructure parameters, and circumventing the discrepancies present in the literature due to different experimental conditions, or different computational methods. With a complete set of the relevant material parameters, it is possible to study the effects of strain and quantum confinement.

More Details

Monochromatic imaging studies of sustained metal vapor arcs burning on 150 mm diameter molten iron electrodes

International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV

Williamson, Rodney L.

Monochromatic imaging was used to investigate the excited-state density distributions of Fe and Fe+ in the inter-electrode gap region of a 3,100 A dc metal vapor arc burning between molten iron surfaces in a vacuum arc furnace. Multiple images were acquired at four wavelengths. The images were corrected and Abel inverted to yield the absolute radial intensity distributions for Fe and Fe+ in the inter-electrode gap region. The results show a structured, axisymmetric plasma consisting of a high density 'core' of Fe+ emitters centered between the electrode surfaces situated against a relatively broad, flat excited-state Fe distribution.

More Details

Optimization of reliability allocation strategies through use of genetic algorithms

6th Symposium on Multidisciplinary Analysis and Optimization

Campbell, J.E.; Painton, L.A.

This paper examines a novel optimization technique called genetic algorithms and its application to the optimization of reliability allocation strategies. Reliability allocation should occur in the initial stages of design, when the objective is to determine an optimal breakdown or allocation of reliability to certain components or subassemblies in order to meet system objectives. The reliability allocation optimization is applied to the design of a cluster tool, a highly complex piece of equipment used in semiconductor manufacturing. The problem formulation is presented, including decision variables, performance measures and constraints, and genetic algorithm parameters. Piecewise “effort curves” specifying the amount of effort required to achieve a certain level of reliability for each component or subassembly are defined. The genetic algorithm evolves or picks those combinations of “effort” or reliability levels for each component which optimize the objective of maximizing Mean Time Between Failures while staying within a budget. The results show that the genetic algorithm is very efficient at finding a set of robust solutions. A time history of the optimization is presented, along with histograms of the solution space fitness, MTBF, and cost for comparative purposes.

More Details

Failure Analysis of a Half-Micron CMOS IC Technology

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Liang, A.Y.

We present the results of recent failure analysis of an advanced, 0.5 um, fully planarized, triple metallization CMOS technology. A variety of failure analysis (FA) tools and techniques were used to localize and identify defects generated by wafer processing. These include light (photon) emission microscopy (LE), fluorescent microthermal imaging (FMI), focused ion beam cross sectioning, SEM/voltage contrast imaging, resistive contrast imaging (RCI), and e-beam testing using an IDS-5000 with an HP 82000. The defects identified included inter- and intra-metal shorts, gate oxide shorts due to plasma processing damage, and high contact resistance due to the contact etch and deposition process. Root causes of these defects were determined and corrective action was taken to improve yield and reliability.

More Details

MULTI-LEVEL POLYSILICON SURFACE-MICROMACHINING TECHNOLOGY: APPLICATIONS AND ISSUES

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Sniegowski, Jeffry J.

Polysilicon surface micromachining is a technology for manufacturing Micro-Electro-Mechanical Systems (MEMS) which has, as its basis, the manufacturing methods and tool sets used to manufacture the integrated electronic circuit. This paper describes a three-level mechanical-polysiiicon surface-micromachining technology and includes a discussion of the advantages of this level of process complexity along with issues which affect device fabrication and performance. Historically, the primary obstacles to multi-level polysilicon fabrication were related to the severe wafer topography generated by the repetition of film depositions and etching. The introduction of Chemical Mechanical Polishing (CMP) to surface micromachining has largely removed these issues and opened significant avenues for device complexity. Several examples of three-level devices with the benefits of CMP are presented. Of primary hindrance to the widespread use of polysilicon surface micromachining, and in particular microactuation mechanisms, are issues related to the device surfaces. The closing discussion examines the potential of several latter and postfabrication processes to circumvent or to directly alleviate the surface problems.

More Details

Nature of the green luminescent center in zinc oxide

Materials Research Society Symposium - Proceedings

Warren, William L.

We apply a number of complementary characterization techniques including electron paramagnetic resonance, optical absorption, and photoluminescence spectroscopies to characterize a wide range of different ZnO phosphor powders. We generally observe a good correlation between the 510-nm green emission intensity and the density of paramagnetic isolated oxygen vacancies. In addition, both quantities are found to peak at a free-carrier concentration ne, of about 1.4×1018 cm-3. We also find that the green emission intensity can be strongly influenced by free-carrier depletion at the particle surface, especially for small particles and/or low doping. Our data suggest that the green PL in ZnO phosphors is due to the recombination of electrons in singly occupied oxygen vacancies with photoexcited holes in the valence band.

More Details

Invariant patterns in crystal lattices: Implications for protein folding algorithms

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hart, William E.; Istrail, Sorin

Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices to define the space of protein conformations. Because various crystal lattices provide discretizations of the same physical phenomenon, it is reasonable to expect that there will exist "invariants" across lattices that define fundamental properties of the protein folding process; an invariant defines a property that transcends particular lattice formulations. This paper identifies two classes of invariants, defined in terms of sublattices that are related to the design of algorithms for the structure prediction problem. The first class of invariants is used to define a master approximation algorithm for which provable performance guarantees exist. This algorithm can be applied to generalizations of the hydrophobic-hydrophilic model that have lattices other than the cubic lattice, including most of the crystal lattices commonly used in protein folding lattice models. The second class of invariants applies to a related lattice model. Using these invariants, we show that for this model the structure prediction problem is intractable across a variety of threedimensional lattices. It turns out that these two classes of invariants are respectively sublattices of the two-and three-dimensional square lattice. As the square lattices are the standard lattices used in empirical protein folding studies, our results provide a rigorous confirmation of the ability of these lattices to provide insight into biological phenomenon. Our results are the first in the literature that identify algorithmic paradigms for the protein structure prediction problem that transcend particular lattice formulations.

More Details

GOMA - A full-Newton finite element program for free and moving boundary problems with coupled fluid/solid momentum, energy, mass, and chemical species transport: User`s guide

Schunk, Peter R.

GOMA is a two- and three-dimensional finite element program which excels in analyses of manufacturing processes, particularly those involving free or moving interfaces. Specifically, the full-Newton-coupled heat, mass, momentum, and pseudo-solid mesh motion algorithm makes GOMA ideally suited for simulating processes in which the bulk fluid transport is closely coupled to the interfacial physics. Examples include, but are not limited to, coating and polymer processing flows, soldering, crystal growth, and solid-network or solution film drying. The code is based on the premise that any boundary can be (1) moving or free, with an apriori unknown position dictated by the distinguishing physics, (2) fixed, according to a global analytical representation, or (3) moving in time and space under user-prescribed kinematics. The goal is to enable the user to predict boundary position or motion simultaneously with the physics of the problem being analyzed and to pursue geometrical design studies and fluid-structure interaction problems. The moving mesh algorithm treats the entire domain as a computational Lagrangian solid that deforms subject to the physical principles which dictate boundary position. As an added benefit, the same Lagrangian solid mechanics can be exploited to solve multi-field problems for which the solid motion and stresses interact with other transport phenomena, either within the same material phase (e.g. shrinking coating) or in neighboring material phases (e.g. flexible blade coating). Thus, analyses of many fluid-structure interaction problems and deformable porous media problems are accessible. This document serves as a user`s guide and reference for GOMA and provides a brief overview of GOMA`s capabilities, theoretical background, and classes of problems for which it is targeted.

More Details

Solution of problems with material nonlinearities with a coupled finite element/boundary element scheme using an iterative solver. Yucca Mountain Site Characterization Project

Koteras, J.R.

The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region.

More Details

Perspectives on plant vulnerabilities & other plant and containment improvements

Camp, Susan E.

The primary goal of the Individual Plant Examination (IPE) Program was for licensees to identify plant-unique vulnerabilities and actions to address these vulnerabilities. A review of these vulnerabilities and plant improvements that were identified in the IPEs was performed as part of the IPE Insights Program sponsored by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this effort was to characterize the identified vulnerabilities and the impact of suggested plant improvements. No specific definition for {open_quotes}vulnerability{close_quotes} was provided in NRC Generic Letter 88-20 or in the subsequent NRC IPE submittal guidance documented in NUREG-1335. Thus licensees were left to use their own definitions. Only 20% of the plants explicitly stated that they had vulnerabilities. However, most licensees identified other plant improvements to address issues not explicitly classified as vulnerabilities, but pertaining to areas in which overall plant safety could potentially be increased. The various definitions of {open_quotes}vulnerability{close_quotes} used by the licensees, explicitly identified vulnerabilities, proposed plant improvements to address these vulnerabilities, and other plant improvements are summarized and discussed.

More Details

Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling

Dupree, S.A.

In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used to support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.

More Details

Development of lead-free solders for hybrid microcircuits

Hosking, F.M.; Vianco, P.T.; Frear, D.R.; Robinson, D.G.

Extensive work has been conducted by industry to develop lead-free solders for electronics applications. The driving force behind this effort is pressure to ban or tax the use of lead-bearing solders. There has been further interest to reduce the use of hazardous chemical cleaners. Lead-free soldering and low-residue, ``no clean`` assembly processing are being considered as solutions to these environmental issues. Most of the work has been directed toward commercial and military printed wiring board (PWB) technology, although similar problems confront the hybrid microcircuit (HMC) industry, where the development of lead-free HMC solders is generally lagging. Sandia National Laboratories is responsible for designing a variety of critical, high reliability hybrid components for radars. Sandia has consequently initiated a project, as part of its Environmentally Conscious Manufacturing program, to develop low-residue, lead-free soldering for HMCs. This paper discusses the progress of that work.

More Details

Tracing early breccia pipe studies, Waste Isolation Pilot Plant, southeastern New Mexico: A study of the documentation available and decision-making during the early years of WIPP

Powers, Dana A.

Breccia pipes in southeastern New Mexico are local dissolution-collapse features that formed over the Capitan reef more than 500,000 years ago. During early site studies for the Waste Isolation Pilot Plant (WIPP), the threat to isolation by these features was undetermined. Geophysical techniques, drilling, and field mapping were used beginning in 1976 to study breccia pipes. None were found at the WIPP site, and they are considered unlikely to be a significant threat even if undetected. WIPP documents related to breccia pipe studies were assembled, inspected, and analyzed, partly to present a history of these studies. The main objective is to assess how well the record reflects the purposes, results, and conclusions of the studies from concept to decision-making. The main record source was the Sandia WIPP Central File (SWCF). Early records (about 1975 to 1977) are very limited, however, about details of objectives and plans predating any investigation. Drilling programs from about 1977 were covered by a broadly standardized statement of work, field operations plan, drilling history, and basic data report. Generally standardized procedures for peer, management, and quality assurance review were developed during this time. Agencies such as the USGS conducted projects according to internal standards. Records of detailed actions for individual programs may not be available, though a variety of such records were found in the SWCF. A complete written record cannot be reconstructed. With persistence, a professional geologist can follow individual programs, relate data to objectives (even if implied), and determine how conclusions were used in decision-making. 83 refs.

More Details

Fuel dispersal in high-speed aircraft/soil impact scenarios

Tieszen, Sheldon R.

The objective of this study is to determine how the jet fuel contained in aircraft wing tanks disperses on impact with a soft terrain, i.e., soils, at high impact velocities. The approach used in this study is to combine experimental and numerical methods. Tests were conducted with an approximately 1/42 linear-scale mass-model of a 1/4 span section of a C-141 wing impacting a sand/clay mixture. The test results showed that within the uncertainty of the data, the percentage of incident liquid mass remaining in the crater is the same as that qualitatively described in earlier napalm bomb development studies. Namely, the percentage of fuel in the crater ranges from near zero for grazing impacts to 25%--50% for high angles of impact. To support a weapons system safety assessment (WSSA), the data from the current study have been reduced to correlations. The numerical model used in the current study is a unique coupling of a Smooth Particle Hydrodynamics (SPH) method with the transient dynamics finite element code PRONTO. Qualitatively, the splash, erosion, and soil compression phenomena are all numerically predicted. Quantitatively, the numerical method predicted a smaller crater cross section than was observed in the tests.

More Details

Performance evaluation of the BostoMatic 300 machining center

Christensen, N.G.

The BostoMatic 300 (BM300) machining center is an integral part of an ongoing Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) titled ``Intelligent Tools for On-Machine Acceptance of Precision Machined Components``. On-Machine Acceptance (OMA) is a new agile manufacturing concept being developed for machine tools at SNL. The concept behind OMA is the integration of product design, fabrication, and qualification processes. To achieve the OMA integration of design, fabrication and qualification processes, the BM300 will function as a fabrication and inspection tool. The BM300 performance evaluation took place in July and August of 1994. Tests were conducted in the Advanced Manufacturing Process Laboratory (AMPL), Bldg 878, SNL/NM using a BM300 serial number MM-590. All testing was in accordance with ANSI/ASME B5.54-1992 ``Performance Evaluation of Numerically Controlled Machining Centers``, unless otherwise noted. The results of all tests were compiled and documented in Section 4.0. The ANSI B5.54 testing of the BM300 was divided into six areas. Those areas are linear displacement accuracy, angular displacement accuracy, axis of rotation (spindle), geometric accuracy, volumetric performance, and machine performance as a measuring tool. Details regarding the six tests and test equipment are documented in Section 4.0. As of August 1994 testing of the BM300 in the area of ``Machine Performance as a Measuring Tool`` had not been completed. Future testing in this area may incorporate the LDRD test part along with the appropriate ANSI B5.54 specification in determining the BM300 accuracy.

More Details

The creation of Sandia`s telecommunication cabling infrastructure

Adams, Roger L.

Sandia National Laboratories in Albuquerque, New Mexico, has adopted strategic, standards-based telecommunication technologies to deliver high-speed communication services to its research and development community. The architecture to provide these services specifies a cabling system capable of carrying high-bandwidth signals to each desktop. While the facilities infrastructure of Sandia has been expanding and evolving over the past four decades to meet the needs of this premier research and development community, the communications infrastructure has remained essentially stagnant. The need to improve Sandia`s telecommunication cable infrastructure gave rise to the Intra-building Recabling Project (IRP). The IRP directed Sandia`s efforts to modernize and standardize the communications infrastructure throughout its New Mexico campus. This report focuses on the development and implementation of the project`s design considerations, concepts, and standards, as well as the adopted transmission media and supporting delivery subsystems.

More Details

Evaluation of a non-cyanide gold plating process for switch tubes

Norwood, D.P.

Switch tubes are used in nuclear weapon firing sets and are required to be reliable and impervious to gas permeation for many years. To accomplish this, a gold plated coating of approximately 25 microns is required over all metal surfaces on the tube exterior. The gold has historically been plated using gold cyanide plating chemistry. In this work we proposed to replace the cyanide plating bath with an environmentally friendlier sulfite gold plating bath. Low and high pH sulfite plating chemistries were investigated as possible replacements for the cyanide gold plating chemistry. The low pH plating chemistry demonstrated a gold plated coating which met the high purity, grain size, and hardness requirements for switch tubes. The high pH chemistry was rejected primarily because the hardness of the gold plated coatings was too high and exceeded switch tube coating requirements. A problem with nodule formation on the gold plated surface using the low pH chemistry had to be resolved during this evaluation. The nodule formation was postulated to be produced by generation of SO{sub 2} in the low pH bath causing gold to be precipitated out when the sulfite concentration falls below a minimum level. The problem was resolved by maintaining a higher sulfite concentration and providing an active filtration system during plating. In this initial study, there were no major obstacles found when using a sulfite gold bath for switch tube plating, however, further work is needed on bath control and bath life before adopting it as the primary plating chemistry.

More Details

Stockpile surveillance: Past and future

Johnson, K.; Keller, J.; Ekdahl, C.; Krajcik, R.; Salazar, L.; Kelly, E.; Paulsen, R.

The US nuclear weapon stockpile is entering a different era. Continuous introduction of new weapons into the stockpile, a large production capacity, and underground nuclear testing played important roles in how the nuclear weapons stockpile was managed in the past. These are no longer elements of the nuclear weapons program. Adjustments need to be made to compensate for the loss of these elements. The history of the stockpile indicates that problems have been found in both nuclear and nonnuclear components through a variety of methods including the Stockpile Evaluation Program, stockpile management activities, underground nuclear tests, and research activities. Changes have been made to the stockpile when necessary to assure safety, performance, and reliability. There have been problems found in each of the weapon types expected to be in the stockpile in the year 2000. It is reasonable to expect problems will continue to arise in the stockpile as it ages beyond the original design expectations.

More Details

Stresses and fractures in the Frontier Formation, Green River Basin, predicted from basin-margin tectonic element interactions

Lorenz, John C.

Natural fractures and in situ stresses commonly dictate subsurface reservoir permeability and permeability anisotropy, as well as the effectiveness of stimulation techniques in low-permeability, natural gas reservoirs. This paper offers an initial prediction for the orientations of the fracture and stress systems in the tight gas reservoirs of the Frontier Formation, in the Green River basin of southwestern Wyoming. It builds on a previous report that addressed fractures and stresses in the western part of the basin and on ideas developed for the rest of the basin, using the principle that thrust faults are capable of affecting the stress magnitudes and orientations in little-deformed strata several hundreds of kilometers in front of a thrust. The prediction of subsurface stresses and natural fracture orientations is an undertaking that requires the willingness to revise models as definitive data are acquired during drilling. The predictions made in this paper are offered with the caveat that geology in the subsurface is always full of surprises.

More Details

Theoretical description of methodology in PHASER (Probabilistic hybrid analytical system evaluation routine)

Cooper, James A.

Probabilistic safety analyses (PSAs) frequently depend on fault tree and event tree models, using probabilities of `events` for inputs. Uncertainty or variability is sometimes included by assuming that the input probabilities vary independently and according to an assumed stochastic probability distribution modes. Evidence is accumulating that this methodology does not apply well to some situations, most significantly when the inputs contain a degree of subjectivity or are dependent. This report documents the current status of an investigation into methods for effectively incorporating subjectivity and dependence in PSAs and into the possibility of incorporating inputs that are partly subjective and partly stochastic. One important byproduct of this investigation was a computer routine that combines conventional PSA techniques with newly developed subjective techniques in a `hybrid` (subjective and conventional PSA) program. This program (PHASER) and a user`s manual are now available for beta use.

More Details

Epoxy and acrylate sterolithography resins: in-situ property measurements

Guess, Tommy R.

Stereolithography is a rapid prototyping method that is becoming an important product realization and concurrent engineering tool, with applications in advanced and agile manufacturing. During the build process, material behavior plays a significant role in the mechanics leading to internal stresses and, potentially, to distortion (curling) of parts. The goal of the ``Stereolithography Manufacturing Process Modeling and Optimization`` LDRD program was to develop engineering tools for improving overall part accuracy during the stereolithography build process. These tools include phenomenological material models of solidifying stereolithography photocurable resins and a 3D finite element architecture that incorporates time varying material behavior, laser path dependence, and structural linkage. This SAND report discusses the in situ measurement of shrinkage and force relaxation behavior of two photocurable resins, and the measurement of curl in simple cantilever beams. These studies directly supported the development of phenomenological material models for solidifying resins and provided experimental curl data to compare to model predictions.

More Details

The development of enhanced ripple-fire identification methods using high frequency data from Pinedale

Carr, Dorthe B.

A technique called ripple fire used in quarry blasts produces modulations in the spectra of these events. The Deployable Seismic Verification System (DSVS) was installed at the Pinedale Seismic Research Facility in Wyoming, an area with a lot of mining activity. DSVS records at frequencies up to 50 Hz and these data provides us with a unique opportunity to determine how well we can discriminate quarry blasts and if there are operational benefits from using high frequency (>20 Hz) data. We have collected a database of 646 events consisting of known earthquakes, known quarry blasts and unknown signals. We have started to calculate preliminary spectrograms if we get the time-independent banding from the quarry blasts, and at what frequencies the banning occurs. We also detail what we hope to accomplish in FY 1996.

More Details

A gridless technique for fluid/structural dynamic coupling on flexible membranes

Wolfe, Walter P.

A gridless method has been developed for the simulation of coupled fluid/structural interactions over arbitrary bodies. This method uses Eulerian-based points arbitrarily distributed over the computational domain with no formal connectivity as typically required for a traditional grid. Comparisons are made with known exact solutions for simple two-dimensional model problems. Methods of improving the accuracy of the current implementation by using higher order approximations have been implemented. Accuracy improvement by using point adaption has been investigated. Plane strain and axisymmetric shells have been added to the code structural code PRONTO2D for future fluid/structural calculations. To date, coupled fluid/structure calculations have not been made.

More Details

Subwavelength diffractive elements fabricated in semiconductor for 975 nm

Smith, R.E.; Warren, M.E.; Wendt, J.R.; Vawter, G.A.

This paper presents a high-efficiency, dielectric, subwavelength surface relief ``blazed grating`` and reports recent results on a subwavelength ``anti-reflection`` surface. These structures were designed for use at 975 nm, probably the shortest wavelength for which semiconductor structures of these types have been successfully demonstrated. They were fabricated in GaAs substrates.

More Details

Gage cookbook: Tools and techniques to measure stresses and motions on explosive experiments

Smith, C.W.

Tools and techniques developed to measure stresses and motions on underground nuclear and high explosive tests in the tuff geologies at the Nevada Test Site are described in this document. The thrust of the measurements was to understand containment phenomenology. The authors concentrate on the fluid-coupled ytterbium gage; it was fielded to measure dynamic stress in the 0.2 to 20 kilobar range and the subsequent, low amplitude residual stress. Also described are accelerometer packages; their traces were integrated to obtain particle motion. Various cable survival techniques were investigated with field measurements for they wished to extend the measurements to late-time. Field measurements were also made to address the gage inclusion problem. Work to date suggests that the problem is a minimum when the stress level is above the yield strength of the host rock and grout. Below the yield level stress amplitudes in the grouted hole can range from 60 to 200% of the stress in the host rock.

More Details

Magnetic field diffusion modeling of a small enclosed firing system

Warne, Larry K.

Intense magnetic fields exist in the immediate vicinity of a lightning strike (and near power lines). Conducting barriers increase the rise time (and thus decrease the rise rate) interior to the barrier, but typically do not prevent penetration of the magnetic field, since the lightning current fall time may be larger than the barrier diffusion time. Thus, substantial energy is present in the interior field, although the degradation of rise rate makes it more difficult to couple into electrical circuits. This report assesses the threat posed by the diffusive magnetic field to interior components and wire loops (where voltages are induced). Analytical and numerical bounding analyses are carried out on a pill box shaped conducting barrier to develop estimates for the worst case magnetic field threats inside the system. Worst case induced voltages and energies are estimated and compared with threshold charge voltages and energies on the output capacitor of the system. Variability of these quantities with respect to design parameters are indicated. The interior magnetic field and induced voltage estimates given in this report can be used as excitations for more detailed interior and component models.

More Details

Experimental tests of irradiation-anneal-reirradiation effects on mechanical properties of RPV plate and weld materials

Hawthorne, J.R.

The Charpy-V (C{sub V}) notch ductility and tension test properties of three reactor pressure vessel (RPV) steel materials were determined for the 288{degree}C (550{degree}F) irradiated (I), 288{degree}C (550{degree}F) irradiated + 454{degree}C (850{degree}F)-168 h postirradiation annealed (IA), and 288{degree}C (550{degree}F) reirradiated (IAR) conditions. Total fluences of the I condition and the IAR condition were, respectively, 3.33 {times} 10{sup 19} n/cm{sup 2} and 4.18 {times} 10{sup 19} n/cm{sup 2}, E > 1 MeV. The irradiation portion of the IAR condition represents an incremental fluence increase of 1. 05 {times} 10{sup 19} n/cm{sup 2}, E > 1 MeV, over the I-condition fluence. The materials (specimens) were supplied by the Yankee Atomic Electric Company and represented high and low nickel content plates and a high nickel, high copper content weld deposit prototypical of the Yankee-Rowe reactor vessel. The promise of the IAR method for extending the fluence tolerance of radiation-sensitive steels and welds is clearly shown by the results. The annealing treatment produced full C{sub V} upper shelf recovery and full or nearly full recovery in the C{sub V} 41 J (30 ft-lb) transition temperature. The C{sub V} transition temperature increases produced by the reirradiation exposure were 22% to 43% of the increase produced by the first cycle irradiation exposure. A somewhat greater radiation embrittlement sensitivity and a somewhat greater reirradiation embrittlement sensitivity was exhibited by the low nickel content plate than the high nickel content plate. Its high phosphorus content is believed to be responsible. The IAR-condition properties of the surface vs. interior regions of the low nickel content plate are also compared.

More Details

Storage and retrieval of nuclear test data

Stearns, S.D.

This report is a part of the Test Information Program (TIP) at Sandia National Laboratories. It is an interim report, written primarily as an instruction document to aid in current work on the project. It addresses some found in storing and retrieving data from nuclear field tests conducted over the past five decades, primarily instrumentation data recorded from tests at the Nevada Test Site. First, the TIP data unit for storing and transporting TIP data is described. The data in the TIP data unit is typically recorded in a universal medium such as the portable optical or magnetic disk, or the tape cassette. Each TIP data unit is portable, and is also self-contained in the sense that it includes a set of related test data files, along with complete instructions and software for retrieval of the data by an unknown user, possibly on an unknown platform. Secondly, we describe the use of current software for compressing and waveform data, for authenticating and checking for errors in data processing files to be used on foreign platforms.

More Details

The {open_quotes}Command and Control{close_quotes} philosophy of the Communist party of China

Kominiak, G.J.

China`s central political authorities have constructed a system which is designed to enable them to exert their personal influence and control over each level of every organization in the country -- both civil and military. The Communist Party of China (CPC) is represented at all levels of each and every organization, including the People`s Liberation Army (PLA). These Party entities are intended to both provide oversight and to ensure that Party policies, directives and orders are obeyed. This penchant for political control, which may have its roots in China`s imperial past, appears to have been reinforced by the early developmental path chosen by the Party`s leadership. Current attempts aimed at maintaining political control of its resources, especially the military, are embodied in the formal system of {open_quotes}Political Work.{close_quotes} In the PLA, this system of political control results in the involvement of political organs in day-to-day military matters to an extent unheard of in the West. Further work is needed in order to understand, more fully, both the system of {open_quotes}Political Work{close_quotes} and its contributions to the overall military (and civil) command and control philosophic of the Communist Party of China.

More Details

Plasma etching of the Group-III nitrides

Shul, Randy J.

In reactive ion etching (RIE) of GaN, the ion bombardment can damage the material, so it is necessary to develop plasma etch processes. This paper reports etching of GaN in an ECR (electron cyclotron resonance) etch system using both the ECR/RIE mode and the RIE-only mode. Group III (Ga, In, Al) nitride ECR etching is reviewed as a function of plasma chemistry, power, temperature, and pressure; as the ECR microwave power increased, the ion density and etch rates increased, with the etch rate increasing the most for InN. GaN etch rates > 6500 {angstrom}/min have been observed in the ECR/RIE mode. 2 figs, 6 refs.

More Details

Update on slimhole drilling

Finger, John T.

Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

More Details

Thar`s gold in them thar notebooks: benefits of laboratory notebooks in the government archive

O'Canna, Myra L.

As Archive Coordinator for Sandia National Laboratories Corporate Archives, I am responsible for promoting the preservation and value of Sandia`s history. Today I will talk about one important part of Sandia`s historical record--the laboratory notebook. I will start with some brief background on Sandia National Laboratories, including the Laboratories` mission and an example of how the gold in one lab notebook helped to give a picture of Sandia`s early history. Next, I will talk about the use of notebooks at Sandia Labs, how they represent technology developed at Sandia, and include noteworthy examples of how patent information has been collected, used, and released to the public. Then, I will discuss how the National Competitiveness Technology Transfer Act of 1989 authorized technology transfer initiatives and the exclusive use of patented information, resulting in many golden opportunities for the national laboratories to work with private industry to further technology. I will briefly discuss laboratory notebook retention schedules and mention a new initiative to better utilize Laboratory notebooks. And, finally, I will summarize how the `gold` in laboratory notebooks in government archives are a reflection of the valuable and extensive research authorized and funded by the government to benefit the public.

More Details

MPATHav: A software prototype for multiobjective routing in transportation risk assessment

Ganter, John H.

Most routing problems depend on several important variables: transport distance, population exposure, accident rate, mandated roads (e.g., HM-164 regulations), and proximity to emergency response resources are typical. These variables may need to be minimized or maximized, and often are weighted. `Objectives` to be satisfied by the analysis are thus created. The resulting problems can be approached by combining spatial analysis techniques from geographic information systems (GIS) with multiobjective analysis techniques from the field of operations research (OR); we call this hybrid multiobjective spatial analysis` (MOSA). MOSA can be used to discover, display, and compare a range of solutions that satisfy a set of objectives to varying degrees. For instance, a suite of solutions may include: one solution that provides short transport distances, but at a cost of high exposure; another solution that provides low exposure, but long distances; and a range of solutions between these two extremes.

More Details

Using artificial neural networks to predict the performance of a liquid metal reflux solar receiver: Preliminary results

Fowler, M.M.

Three and four-layer backpropagation artificial neural networks have been used to predict the power output of a liquid metal reflux solar receiver. The networks were trained using on-sun test data recorded at Sandia National Laboratories in Albuquerque, New Mexico. The preliminary results presented in this paper are a comparison of how different size networks train on this particular data. The results give encouragement that it will be possible to predict output power of a liquid metal receiver under a variety of operating conditions using artificial neural networks.

More Details

Light scattering studies of an electrorheological fluid in oscillatory shear

Martin, James E.

We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.

More Details

Quartz gauge response in ion radiation

Anderson, Mark U.

This paper describes recent work to make high quality quartz gauge (temporal and spatial) shock wave measurements in a pulsed ion beam environment. Intense ion beam radiation, nominally 1 MeV protons, was deposited into material samples instrumented with shunted quartz gauges adjacent to the ion deposition zone. Fluence levels were chosen to excite three fundamentally different material response modes (1) strong vapor, (2) combined vapor and melt phase and (3) thermoelastic material response. A unique quartz gauge design was utilized that employed printed circuit board (PCB) technology to facilitate electrical shielding, ruggedness, and fabrication @e meeting the essential one dimensional requirements of the characterized Sandia shunted quartz gauge. Shock loading and unloading experiments were conducted to evaluate the piezoelectric response of the coupled quartz gauge/PCB transducer. High fidelity shock wave profiles were recorded at the three ion fluence levels providing dynamic material response data for vapor, melt and solid material phases.

More Details

Enhancing data locality by using terminal propagation

Hendrickson, Bruce A.

Terminal propagation is a method developed in the circuit placement community for adding constraints to graph partitioning problems. This paper adapts and expands this idea, and applies it to the problem of partitioning data structures among the processors of a parallel computer. We show how the constraints in terminal propagation can be used to encourage partitions in which messages are communicated only between architecturally near processors. We then show how these constraints can be handled in two important partitioning algorithms, spectral bisection and multilevel-KL. We compare the quality of partitions generated by these algorithms to each other and to Partitions generated by more familiar techniques.

More Details

The rotary electrorheological effect

Martin, James E.

The viscous response of electrorheological fluids is usually manipulated through the use of DC or uniaxial AC electric fields. The result is that fibrillated structures parallel to the field form in a quiescent fluid; the distortion of such structures in a flow determines the enhanced viscous response, at least at low and moderate flow rates. We have conducted preliminary studies of electrorheological response in a different field configurations rotating electric field. With respect to the uniaxial AC case. there are two new developments in this type of field. The structures formed are disk-like, in the plane of the rotating field. Furthermore, the structures rotate either with or against the field, depending on the dielectric or conductivity contrast with the surrounding fluid.

More Details

Verification of RADTRAN

Kanipe, Frances L.

This document presents details of the verification process of the RADTRAN computer code which was established for the calculation of risk estimates for radioactive materials transportation by highway, rail, air, and waterborne modes.

More Details

Ring-field EUVL camera with large Etendu

Sweatt, W.C.

A ``debris-less`` laser-plasma source (LPS) of extreme-UV radiation has been developed by Kubiak, et al. This is a huge step forward for the extreme-UV lithography program (EUVL) because it will extend the life of the collecting mirrors that face the source. This source has a 300-{mu}m diameter (D source) which is larger than the earlier, {approximately}75-{mu}m diameter plasma balls created on metal targets. The larger source size requires that the Etendu of the system must also be larger if the source radiation is to be used efficiently. A family of 4-mirror, scanning, ring-field lithography cameras has been designed that can be efficiently coupled to a ``debris-less`` LPS. The most promising design has a 0.085-numerical aperture (NA{sub camera}) for printing {approx} 100-nm features. At the image plane it has 13 nm of distortion and a 98% Strehl ratio across its 7-mm wide ring-field ({Delta}r).

More Details

Dynamical modeling and characterization of a surface micromachined microengine

Miller, Samuel L.

The practical implementation of the surface micromachined microengine [1,2] to perform useful microactuation tasks requires a thorough understanding of the dynamics of the engine. This understanding is necessary in order to create appropriate drive signals, and to experimentally measure fundamental quantities associated with the engine system. We have developed and applied a dynamical model of the microengine and used it to accomplish three objectives: (1) drive inertial loads in a controlled fashion, i.e. specify and achieve a desired time dependent angular position of the output gear,( 2) minimize stress and frictional forces during operation, and (3) as a function of time, experimentally determine forces associated with the output gear, such as the load torque being applied to the output gear due to friction.

More Details

Probability-based stability robustness assessment of controlled structures

Field Jr., R.V.; Voulgaris, P.G.; Bergman, L.A.

Model uncertainty, if ignored, can seriously degrade the performance of an otherwise well-designed control system. If the level of this uncertainty is extreme, the system may even be driven to instability. In the context of structural control, performance degradation and instability imply excessive vibration or even structural failure. Robust control has typically been applied to the issue of model uncertainty through worst-case analyses. These traditional methods include the use of the structured singular value, as applied to the small gain condition, to provide estimates of controller robustness. However, this emphasis on the worst-case scenario has not allowed a probabilistic understanding of robust control. In this paper an attempt to view controller robustness as a probability measure is presented. The probability of failure due to parametric uncertainty is estimated using first-order reliability methods (FORM). It is demonstrated that this method can provide quite accurate results on the probability of failure of actively controlled structures. Moreover, a comparison of this method to a suitability modified structured singular value robustness analysis in a probabilistic framework is performed. It is shown that FORM is the superior analysis technique when applied to a controlled three degree-of-freedom structure. In addition, the robustness qualities of various active control design schemes such as LQR, H{sub 2}, H {sub oo}, and {mu}-synthesis is discussed in order to provide some design guidelines.

More Details

The effects of conduction, convection, and radiation on the thermodynamic environment surrounding a heat-generating waste package

Ho, Clifford K.

The thermodynamic environment surrounding a heat-generating waste package can play an important role in the performance of a high-level radioactive waste repository. However, rigorous models of heat transfer are often compromised in near-drift simulations. Convection and radiation are usually ignored or approximated so that simpler conduction models can be used. This paper presents numerical simulations that explicitly model conduction, convection, and radiation in an empty drift following emplacement of a heat-generating waste package. Temperatures and relative humidities are determined at various locations within the drift. Comparisons are made between different models of heat transfer, and the relative effects of each heat transfer mode on the thermodynamic environment of the waste package are examined.

More Details

Technical considerations for the implementation of subsurface microbial barriers for restoration of groundwater at UMTRA sites

Tucker, Mark D.

The Uranium Mill Tailings Remediation Action (UMTRA) Program is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the United States. The surface remediation phase, which has primarily focused on containment and stabilization of the abandoned uranium mill tailings piles, is nearing completion. Attention has now turned to the groundwater restoration phase. One alternative under consideration for groundwater restoration at UMTRA sites is the use of in-situ permeable reactive subsurface barriers. In this type of a system, contaminated groundwater will be allowed to flow naturally through a barrier filled with material which will remove hazardous constituents from the water by physical, chemical or microbial processes while allowing passage of the pore water. The subject of this report is a reactive barrier which would remove uranium and other contaminants of concern from groundwater by microbial action (i.e., a microbial barrier). The purpose of this report is to assess the current state of this technology and to determine issues that must be addressed in order to use this technology at UMTRA sites. The report focuses on six contaminants of concern at UMTRA sites including uranium, arsenic, selenium, molybdenum, cadmium and chromium. In the first section of this report, the fundamental chemical and biological processes that must occur in a microbial barrier to control the migration of contaminants are described. The second section contains a literature review of research which has been conducted on the use of microorganisms to immobilize heavy metals. The third section addresses areas which need further development before a microbial barrier can be implemented at an UMTRA site.

More Details

The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs

Samara, George A.

This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

More Details

Evaluation of Smart Gun Technologies preliminary report

Weiss, D.R.

The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

More Details

Three-dimensional modeling of flow through fractured tuff at Fran Ridge

Eaton, R.R.

Numerical studies have been made of an infiltration experiment at Fran Ridge using the TOUGH2 code to aid in the selection of computational models for performance assessment. The exercise investigates the capabilities of TOUGH2 to model transient flows through highly fractured tuff and provides a possible means of calibration. Two distinctly different conceptual models were used in the TOUGH2 code, the dual permeability model and the equivalent continuum model. The infiltration test modeled involved the infiltration of dyed ponded water for 36 minutes. The 205 gallon filtration of water observed in the experiment was subsequently modeled using measured Fran Ridge fracture frequencies, and a specified fracture aperture of 285 {mu}m. The dual permeability formulation predicted considerable infiltration along the fracture network, which was in agreement with the experimental observations. As expected, minimal fracture penetration of the infiltrating water was calculated using the equivalent continuum model, thus demonstrating that this model is not appropriate for modeling the highly transient experiment. It is therefore recommended that the dual permeability model be given priority when computing high-flux infiltration for use in performance assessment studies.

More Details

A preliminary investigation of the Topaz II reactor as a lunar surface power supply

Polansky, Gary

Reactor power supplies offer many attractive characteristics for lunar surface applications. The Topaz II reactor resulted from an extensive development program in the former Soviet Union. Flight quality reactor units remain from this program and are currently under evaluation in the United States. This paper examines the potential for applying the Topaz II, originally developed to provide spacecraft power, as a lunar surface power supply.

More Details

Unsaturated zone flow modeling for GWTT-95

Ho, Clifford K.

In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated.

More Details

Questions to be addressed in the next Yucca Mountain performance assessment analysis

Barnard, R.

The next total-system performance-assessment (TSPA) analyses are designed to aid DOE in performing an ``investment analysis`` for Yucca Mountain. This TSPA must try to bound the uncertainties for several issues that will contribute to the decision whether the US should proceed with the development of a nuclear-waste repository at Yucca Mountain. Because site-characterization experiments and data collection will continue for the foreseeable future, the next TSPA (called TSPA-IA) will again only be able to use partially developed models and partial data sets. In contrast to previous analyses however, TSPA-IA must address more specific questions to be of assistance to the investment-analysis deliberations.

More Details

Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

Altman, Susan J.

Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al.

More Details

Near-drift thermal analysis including combined modes of conduction, convection, and radiation

Ho, Clifford K.

The performance of waste packages containing high-level nuclear wastes at underground repositories such as the potential repository at Yucca Mountain, Nevada, depends, in part, on the thermodynamic environment immediately surrounding the buried waste packages. For example, degradation of the waste packages can be caused by corrosive and microbial processes, which are influenced by both the relative humidity and temperature within the emplacement drifts. In this paper, the effects of conduction, convection, and radiation are investigated for a heat-generating waste package in an empty-drift. Simulations explicitly modeling radiation from the waste package to the drift wall are compared simulations using only conduction. Temperatures, relative humidities, and vapor mass fractions are compared at various locations within the drift. In addition, the effects of convection on relative humidity and moisture distribution within the drift are presented.

More Details

Radiation dose modeling using IGRIP and Deneb/ERGO

Davis, K.R.

The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb`s ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood.

More Details

Modal parameter extraction from large operating structures using ambient excitation

James III, G.H.; Carne, T.G.; Mayes, R.L.

A technique called the Natural Excitation Technique or has been developed to response extract response parameters from large operational structure when subjected to random and unmeasured forces such as wind, road noise, aerodynamics, or waves. Six applications of NExT to ambient excitation testing and NExT analysis are surveyed in this paper with a minimum of technical detail. In the first application, NExT was applied to a controlled-yaw Horizontal-Axis Wind Turbine (HAWT). By controlling the yaw degree of freedom an important class of rotating coordinate system effects are reduced. A new shape extraction procedure was applied to this data set with good results. The second application was to a free-yaw HAWT. The complexity of the response has prompted further analytical studies and the development of a specialized visualization package. The third application of NExT was to a parked three-bladed Vertical-Axis Wind Turbine (VAWT) in which traditional modal testing could not excite all modes of interest. The shape extraction process used cross-correlation functions directly in a time-domain shape-fitting routine. The fourth application was to ground transportation systems. Ongoing work to improve driver and passenger comfort in tractor-trailer vehicles and to refine automobile body and tire models will use NExT. NExT has been used to process ambient vibration data for Finite Element Model correlation and is being used to study Structural Health Monitoring with ambient excitation. Shape fitting was performed using amplitude and phase information taken directly from the cross-spectra. The final application is to an offshore structure. This work is on-going, however initial studies have found a high-modal density, high noise content, and sparse data set.

More Details

Low-power approaches for parallel, free-space photonic interconnects

Carson, R.F.

Future advances in the application of photonic interconnects will involve the insertion of parallel-channel links into Multi-Chip Modules (MCMS) and board-level parallel connections. Such applications will drive photonic link components into more compact forms that consume far less power than traditional telecommunication data links. These will make use of new device-level technologies such as vertical cavity surface-emitting lasers and special low-power parallel photoreceiver circuits. Depending on the application, these device technologies will often be monolithically integrated to reduce the amount of board or module real estate required by the photonics. Highly parallel MCM and board-level applications will also require simplified drive circuitry, lower cost, and higher reliability than has been demonstrated in photonic and optoelectronic technologies. An example is found in two-dimensional point-to-point array interconnects for MCM stacking. These interconnects are based on high-efficiency Vertical Cavity Surface Emitting Lasers (VCSELs), Heterojunction Bipolar Transistor (HBT) photoreceivers, integrated micro-optics, and MCM-compatible packaging techniques. Individual channels have been demonstrated at 100 Mb/s, operating with a direct 3.3V CMOS electronic interface while using 45 mW of electrical power. These results demonstrate how optoelectronic device technologies can be optimized for low-power parallel link applications.

More Details

Application of spreadsheets to standardize transportation radiological risk assessments

Mcclure, J.D.

Because of the complexity, volume of data and calculations required, one preferred analytical tool to perform transportation risk assessments is the RADTRAN computer code. RADTRAN combines user-determined material, packaging, transportation, demographic and meteorological factors, with health physics data to calculate expected radiological consequences and accident risk from transporting radioactive materials by all commercial modes including truck, rail, ship, air and barge. The computer code consists of two major modules for each transport mode: the incident-free module, in which doses from normal transport are calculated; and the accident module, in which dose consequences and probabilities are evaluated to generate risk estimates. The purpose of this presentation is to describe the development of a standardized procedure to perform transportation radiological risk assessments employing conventional spreadsheet programs to automate generation of RADTRAN input files and post-processing analysis of the resulting output.

More Details

Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

Salinas, Stephanie A.

This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance.

More Details

Cooperative business management strategies for the U.S. integrated textile complex

Washington, Kenneth

The mission of the American Textile (AMTEX{trademark}) Partnership is to engage the unique technical resources of the Department of Energy National Laboratories to work with the US Integrated Textile Complex (US ITC) and research universities to develop and deploy technologies that will increase the competitiveness of the US ITC. The objectives of the Demand Activated Manufacturing Architecture (DAMA) project of AMTEX are: (1) to determine strategic business structure changes for the US ITC; (2) to establish a textile industry electronic marketplace, (3) to provide methods for US ITC education ad implementation of an electronic marketplace. The Enterprise Modeling and Simulation Task of DAMA is focusing on the first DAMA goal as described in another paper of this conference. The Cooperative Business Management (CBM) Task of DAMA is developing computer-based tools that will render system-wide information accessible for improved decision making. Three CBM strategies and the associated computer tools being developed to support their implementation are described in this paper. This effort is addressing the second DAMA goal to establish a textile industry electronic marketplace in concert with the Connectivity and Infrastructure Task of DAMA. As the CBM tools mature, they will be commercialized through the DAMA Education, Outreach and Commercialization Task of DAMA to achieve the third and final DAMA goal.

More Details

Fatigue reliability of wind turbine fleets: The effect of uncertainty of projected costs

Veers, Paul S.

The cost of repairing or replacing failed components depends on the number and timing of failures. Although the total probability of individual component failure is sometimes interpreted as the percentage of components likely to fail, this perception is often far from correct. Different amounts of common versus independent uncertainty can cause different numbers of components to be at risk of failure. The FAROW tool for fatigue and reliability analysis of wind turbines makes it possible for the first time to conduct a detailed economic analysis of the effects of uncertainty on fleet costs. By dividing the uncertainty into common and independent parts, the percentage of components expected to fail in each year of operation is estimated. Costs are assigned to the failures and the yearly costs and present values are computed. If replacement cost is simply a constant multiple of the number of failures, the average, or expected cost is the same as would be calculated by multiplying by the probability of individual component failure. However, more complicated cost models require a break down of how many components are likely to fail. This break down enables the calculation of costs associated with various probability of occurrence levels, illustrating the variability in projected costs. Estimating how the numbers of components expected to fail evolves over time is also useful in calculating the present value of projected costs and in understanding the nature of the financial risk.

More Details

Development of a corrosion detection experiment to evaluate conventional and advanced NDI techniques

Roach, Dennis P.

The Aging Aircraft NDI Validation Center (AANC) was established by the Federal Aviation Administration Technical Center (FAATC) at Sandia National Laboratories in August of 1991. The goal of the AANC is to provide independent validation of technologies intended to enhance the structural inspection of aging commuter and transport aircraft. The deliverables from the AANC`s validation activities are assessments of the reliability of existing and emerging inspection technologies as well as analyses of the cost benefits to be derived from their implementation. This paper describes the methodology developed by the AANC to assess the performance of NDI techniques. In particular, an experiment being developed to evaluate corrosion detection devices will be presented. The experiment uses engineered test specimens, as well as complete aircraft test beds to provide metrics for NDI validation.

More Details

Sandia National Laboratories Institutional Plan: FY 1996--2001

Garber, D.P.

Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

More Details

An integrated approach to product development and manufacturing

Readey, M.J.

A new approach to product development is described that integrates various unit operations into a unified ``knowledge-base``. This knowledge-base is easily accessible to all members of the design team due to the advent of high performance and networking capabilities of today`s desktop computers. This permits rapid optimization of the product`s material, shape, and manufacturing processes that satisfy the customer`s performance requirements while maximizing economic return for the manufacturer.

More Details

Update on the Federal Facilities Compliance Act disposal workgroup disposal site evaluation - what has worked and what has not

Waters, Robert D.

The Department of Energy (DOE) has been developing a planning process for mixed low-level waste (MLLW) disposal in conjunction with the affected states for over two years and has screened the potential disposal sites from 49 to 15. A radiological performance evaluation was conducted on these fifteen sites to further identify their strengths and weaknesses for disposal of MLLW. Technical analyses are on-going. The disposal evaluation process has sufficiently satisfied the affected states` concerns to the point that disposal has not been a major issue in the consent order process for site treatment plans. Additionally, a large amount of technical and institutional information on several DOE sites has been summarized. The relative technical capabilities of the remaining fifteen sites have been demonstrated, and the benefits of waste form and disposal facility performance have been quantified. However, the final disposal configuration has not yet been determined. Additionally, the MLLW disposal planning efforts will need to integrate more closely with the low-level waste disposal activities before a final MLLW disposal configuration can be determined. Recent Environmental Protection Agency efforts related to the definition of hazardous wastes may also affect the process.

More Details

Surface morphology and microstructure of Al-O alloys grown by ECR plasma deposition

Barbour, J.C.

The growth of polycrystalline and amorphous aluminum-oxygen alloy films using electron-beam evaporation of Al in the presence of an O{sub 2} electron-cyclotron-resonance (ECR) plasma was investigated for film compositions varying from 40% Al (Al{sub 2}O{sub 3}) to near 100% Al (AlO{sub x}). Processing parameters such as deposition temperature and ion energy were varied to study their effects on surface texture and film microstructure. The Al-rich films (AlO{sub x}) contain polycrystalline fcc Al grains with finely dispersed second-phase particles of {gamma}-Al{sub 2}O{sub 3} (1-2 nm in size). The surface roughness of these films was measured by atomic force microscopy and found to increase with sample bias and deposition temperature. Stoichiometric Al{sub 2}O{sub 3} films grown at 100{degrees}C and 400{degrees}C without an applied bias were amorphous, while an applied bias of -140 V formed a nanocrystalline {gamma}-Al{sub 2}O{sub 3} film at 400{degrees}C. The surface roughness of the Al{sub 2}O{sub 3} increased with temperature while ion irradiation produced a smoother surface.

More Details

Management of citation verification requests for multiple projects at Sandia National Laboratories

Crawford, C.S.

Sandia National Laboratories` (SNL) Technical Library is now responsible for providing citation verification management support for all references cited in technical reports issued by the Nuclear Waste Management (NWM) Program. This paper dancing how this process is managed for the Yucca Mountain Site Characterization (YWP), Waste Isolation Pilot Plant (WIPP), Idaho National Engineering Laboratory (INEL), and Greater Confinement Disposal (GCD) projects. Since technical reports are the main product of these projects, emphasis is placed on meeting the constantly evolving needs of these customers in a timely and cost-effective manner.

More Details

Very high intensity fiber transmission systems

Setchell, Robert E.

Various applications are currently motivating interest in the transmission of very high laser intensities through optical fibers. As intensities within a fiber are increased, however, laser breakdown or laser-induced fiber damage will eventually occur and interrupt fiber transmission. For a number of years we have been studying these effects during the transmission of Q-switched, Nd/YAG laser pulses through step-index, multimode, fused-silica fiber. We have found that fiber transmission is often limited by a plasma-forming breakdown occurring at the fiber entrance face. This breakdown results in subtle surface modifications that can leave the surface more resistant to further breakdown or damage events. Catastrophic fiber damage can also occur as a result of a number of different mechanisms, with damage appearing at fiber end faces, within the initial ``entry`` segment of the fiber path, and at other internal sites due to effects related to the particular fiber routing. An overview of these past observations is presented, and issues requiring further study are identified.

More Details

Electroreflectance and the problem of studying plasma-surface interactions

Preppernau, B.L.

A long standing problem in low-temperature plasma discharge physics is to understand in detail the mutual interaction of real exposed surfaces (electrodes) with the reactive plasma environment. In particular, one wishes to discern the influence of these surfaces on the plasma parameters given their contributions from secondary electrons and ions. This paper briefly reviews the known surface interaction processes as well as currently available diagnostics to study the interface between plasmas and surfaces. Next comes a discussion describing the application of plasma-modulated electroreflectance to this research and some potential experimental techniques.

More Details

Low-energy deposition of high-strength Al(0) alloys from an ECR plasma

Barbour, J.C.

Low-energy deposition of Al(O) alloys from an electron cyclotron resonance (ECR) plasma offers a scaleable method for the synthesis of thick, high-strength Al layers. This work compares alloy layers formed by an ECR-0{sub 2} plasma in conjunction with Al evaporation to 0-implanted Al (ion energies 25-200 keV); and it examines the effects of volume fraction of A1{sub 2}0{sub 3} phase and deposition temperature on the yield stress of the material. TEM showed the Al(O) alloys contain a dense dispersion of small {gamma}-Al{sub 2}0{sub 3} precipitates ({approximately}l nm) in a fine-grain (10-100 nm) fcc Al matrix when deposited at a temperature of {approximately}100C, similar to the microstructure for gigapascal-strength 0-implanted Al. Nanoindentation gave hardnesses for ECR films from 1.1 to 3.2 GPa, and finite-element modeling gave yield stresses up to 1.3 {plus_minus} 0.2 GPa with an elastic modulus of 66 GPa {plus_minus} 6 GPa (similar to pure bulk Al). The yield stress of a polycrystalline pure Al layer was only 0.19 {plus_minus} 0.02 GPa, which was increased to 0.87 {plus_minus} 0.15 GPa by implantation with 5 at. % 0.

More Details

Multidimensional electron-photon transport with standard discrete ordinates codes

Drumm, Clifton R.

A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electronphoton transport problems.

More Details

Impacts of seismic activity on long-term repository performance at Yucca Mountain

Wilson, Michael L.

Several effects of seismic activity on the release of radionuclides from a potential repository at Yucca Mountain are quantified. Future seismic events are predicted using data from the seismic hazard analysis conducted for the Exploratory Studies Facility (ESF). Phenomenological models are developed, including rockfall (thermal-mechanical and seismic) in unbackfilled emplacement drifts, container damage caused by fault displacement within the repository, and flow-path chance caused by changes in strain. Using the composite-porosity flow model (relatively large-scale, regular percolation), seismic events show little effect on total-system releases; using the weeps flow model (episodic pulses of flow in locally saturated fractures), container damage and flow-path changes cause over an order of magnitude increase in releases. In separate calculations using, more realistic representations of faulting, water-table rise caused by seismically induced changes in strain are seen to be higher than previously estimated by others, but not sufficient to reach a potential repository.

More Details

Calibration of an explosives vapor generator based on vapor diffusion from a condensed phase

Parmeter, John

Development of a vapor generator for consistently producing accurate amounts of vapor from low vapor pressure explosive materials is a pressing need within the explosives detection community. Of particular importance for reproducibility and widespread acceptance of results is the correlation of such a vapor generator to a National Institute of Standards and Technology (NIST) mass standard. This paper describes an explosives vapor generator recently developed at Varian in which a solid explosive sample in a precision bore glass tube is put in an oven at constant temperature, and vapor diff-using from the top of the tube is entrained in a carrier gas flow. The rate of vapor output is thus dependent on both the equilibrium vapor pressure of the solid at oven temperature and the rate of diffusion up the length of the tube. Correlation to a NIST mass standard is achieved by periodic weighing of the sample tube on a microbalance. We report results obtained with the explosives TNT and RDX. Results for TNT show that the mass output rate is constant over hundreds of hours of continuous use, with outputs of {approximately} 10--2000 pg/sec for oven temperatures in the range of 60--120{degrees}C. Both the mass loss experiments and calibration with an ion mobility spectrometer (IMS) give a TNT mass output value of 85 pg/sec at 79{degrees}C, and this result is supported by transport theory calculations. Mass loss curves for RDX are also linear with time, and show the expected exponential increase of mass output with oven temperature.

More Details
Results 95101–95200 of 99,299
Results 95101–95200 of 99,299