Publications

2 Results

Search results

Jump to search filters

Thin film circuit fabrication on diamond substrates for high power applications

Norwood, D.

Sandia Laboratories has developed a thin film diamond substrate technology to meet the requirements for high power and high density circuits. Processes were developed to metallize, photopattern, laser process, and, package diamond thin film networks which were later assembled into high power multichip modules (MCMS) to test for effectiveness at removing heat. Diamond clearly demonstrated improvement in heat transfer during 20 Watt, strip heating experiments with junction-to-ambient temperature increases of less than 24 C compared to 126 C and 265 C for the aluminum nitride and ceramic versions, respectively.

More Details

Diamond: A new high thermal conductivity substrate for multichip modules and hybrid circuits

Norwood, D.

As applications for hybrid circuits and multichip modules create demand for higher density circuits and higher power components, new substrate materials are required to deal with the heat generated on the circuit. Sandia National Laboratories is developing diamond substrate technology to meet the requirements of high thermal conductivity. Thin film processes were developed and characterized to delineate conductor-resistor networks on free standing diamond substrates having fine line gold conductors and low and high sheet resistivity resistors. Thin film hybrid circuit technology was developed on CVD-processed, polycrystalline diamond substrates having as-deposited surface finishes as well as those with polished surfaces. Conductors were defined by pattern plating gold and resistors were processed from sputtered tantalum nitride films which were deposited to sheet resistivities of 5 and/or 100 ohms per square. Resistor films on diamond substrates were evaluated for Temperature Coefficient of Resistance (TCR), stability with time and temperature, and trimmability using YAG laser processing. Plated gold conductors were patterned on diamond to feature sizes of 25 microns and successfully tested for adhesion and bondability. Advanced YAG laser trimming techniques were developed to allow resistor trims on both low and high value resistors to within 1% of desip value while maintaining required resistor stability, new trim techniques were needed to offset the carbonization of diamond in the laser trim area. Reliability studies were carried out on the diamond thin film networks which showed them to compare favorably with the same thin film technology on alumina substrates.

More Details
2 Results
2 Results