Publications

Results 3101–3125 of 99,299

Search results

Jump to search filters

The Seismic Signature of a High-Energy Density Physics Laboratory and Its Potential for Measuring Time-Dependent Velocity Structure

Seismological Research Letters

Stairs, Ryan K.; Schmandt, Brandon; Townsend, Joshua P.; Wang, Ruijia

The Z Machine at Sandia National Laboratories is a pulsed power facility for high-energy density physics experiments that can shock materials to extreme temperatures and pressures through a focused energy release of up to ∼ 25 MJ in < 100 nanoseconds. It has been in operation for more than two decades and conducts up to ∼ 100 experiments, or “shots,” per year. Based on a set of 74 known shot times from 2018, we determined that Z Machine shots produce detectable ∼ 3–17 Hz ground motion 12 km away at the Albuquerque Seismological Laboratory, New Mexico (ANMO), borehole seismograph, with peak signal at ∼ 7 Hz. The known shot waveforms were used to create a three-component template, leading to the detection of 2339 Z Machine shots since 1998 through single-station cross-correlation. Local seismic magnitude estimates range from local magnitude (ML) -2 to -1.3 and indicate that only a small fraction of the shot energy is transmitted by seismic phases observable at 12 km distance. The most recent major facility renovation, which was intended to decrease mechanical dissipation, is associated with an abrupt decrease in observed seismic amplitudes at ANMO despite stable maximum shot energy. The highly repetitive impulsive sources are well suited to coda-wave interferometry to investigate time-dependent velocity structures. Relative velocity variations (dv/v) show an annual cycle with amplitude of ∼ 0.2%. Local minima are observed in the late spring, and dv/v increases through the summer monsoon rainfall, possibly reflecting patchy saturation as rainfall infiltrates near the eastern edge of the Albuquerque basin. The cumulative results demonstrate that forensic seismology can provide insight into long-term operation of facilities such as pulsed-power laboratories, and that their recurring signals may be valuable for studies of time-dependent structure.

More Details

Effects of a CFD-improved dimple stepped-lip piston on thermal efficiency and emissions in a medium-duty diesel engine

International Journal of Engine Research

Wu, Angela; Cho, Seokwon; Lopez Pintor, Dario; Busch, Stephen; Perini, Federico; Reitz, Rolf D.

Diesel piston-bowl shape is a key design parameter that affects spray-wall interactions and turbulent flow development, and in turn affects the engine’s thermal efficiency and emissions. It is hypothesized that thermal efficiency can be improved by enhancing squish-region vortices as they are hypothesized to promote fuel-air mixing, leading to faster heat-release rates. However, the strength and longevity of these vortices decrease with advanced injection timings for typical stepped-lip (SL) piston geometries. Dimple stepped-lip (DSL) pistons enhance vortex formation at early injection timings. Previous engine experiments with such a bowl show 1.4% thermal efficiency gains over an SL piston. However, soot was increased dramatically [SAE 2022-01-0400]. In a previous study, a new DSL bowl was designed using non-combusting computational fluid dynamic simulations. This improved DSL bowl is predicted to promote stronger, more rotationally energetic vortices than the baseline DSL piston: it employs shallower, narrower, and steeper-curved dimples that are placed further out into the squish region. In the current experimental study, this improved bowl is tested in a medium-duty diesel engine and compared against the SL piston over an injection timing sweep at low-load and part-load operating conditions. No substantial thermal efficiency gains are achieved at the early injection timing with the improved DSL design, but soot emissions are lowered by 45% relative to the production SL piston, likely due to improved air utilization and soot oxidation. However, these benefits are lost at late injection timings, where the DSL piston renders a lower thermal efficiency than that of the SL piston. Energy balance analyses show higher wall heat transfer with the DSL piston than with the SL piston despite a 1.3% reduction in the piston surface area. Vortex enhancement may not necessarily lead to improved efficiency as more energetic squish-region vortices can lead to higher convective heat transfer losses.

More Details

Gap Analysis of Global Climate Agreements

Evans, Jenni L.

As climate change progresses, there will be greater pressure on state and nonstate actors to mitigate associated harms. This pressure will encourage aggressive action on climate change, including more ambitious emissions reduction goals and the use of both conventional and novel environmental modification techniques. Existing international agreements—including the Paris Agreement and the Environmental Modification Convention (ENMOD)—are critical to ensuring that climate change mitigation is achieved through peaceful, meaningful, and sustainable methods. With this in mind, this paper provides an overview of the Paris Agreement and ENMOD and identifies updates required for these agreements to meet the evolving challenges of climate change.

More Details
Results 3101–3125 of 99,299
Results 3101–3125 of 99,299