Publications

Results 51–74 of 74

Search results

Jump to search filters

Numerical modeling of finite-size plasmon structures with enhanced optical transmission using EIGER

ICEAA 2005 - 9th International Conference on Electromagnetics in Advanced Applications and EESC 2005 - 11th European Electromagnetic Structures Conference

Basilio, L.I.; Johnson, William Arthur.; Jackson, D.R.; Wilton, D.R.

Simulation results demonstrating transmission enhancement through a sub-wavelength aperature in an infinite plasmon array are presented. The results are obtained using EIGER and are considered preliminary before proceeding to the simulation of finite-plasmon arrays.

More Details

Dipole radiation from a cylindrical hole in the earth

Warne, Larry K.; Johnson, William Arthur.

This report examines the problem of an antenna radiating from a cylindrical hole in the earth and the subsequent far-zone field produced in the upper air half space. The approach used for this analysis was to first examine propagation characteristics along the hole for surrounding geologic material properties. Three cases of sand with various levels of moisture content were considered as the surrounding material to the hole. For the hole diameters and sand cases examined, the radiation through the earth medium was found to be the dominant contribution to the radiation transmitted through to the upper half-space. In the analysis presented, the radiation from a vertical and a horizontal dipole source within the hole is used to determine a closed-form expression for the radiation in the earth medium which represents a modified element factor for the source and hole combination. As the final step, the well-known results for a dipole below a half space, in conjunction with the use of Snell's law to transform the modified element factor to the upper half space, determine closed-form expressions for the far-zone radiated fields in the air region above the earth.

More Details

An improved statistical model for linear antenna input impedance in an electrically large cavity

Johnson, William Arthur.; Jorgenson, Roy E.; Warne, Larry K.

This report presents a modification of a previous model for the statistical distribution of linear antenna impedance. With this modification a simple formula is determined which yields accurate results for all ratios of modal spectral width to spacing. It is shown that the reactance formula approaches the known unit Lorentzian in the lossless limit.

More Details

Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating

Rambo, Patrick K.; Schwarz, Jens S.; Smith, Ian C.; Ashley, Carol S.; Branson, Eric D.; Dunphy, Darren R.; Cook, Adam W.; Reed, Scott T.; Johnson, William Arthur.

In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

More Details

Modeling edge singularities in the method of moments

Johnson, William Arthur.

The authors explore various possible approaches for generating lowest order and higher order bases for modeling surface currents and their divergence for moment method application to integral equations. The bases developed are defined on curved triangular and quadrilateral elements. All the bases are conveniently defined in parent element coordinates, and each expansion function spans one or two patches.

More Details

Capacitance and effective area of flush monopole probes

Basilio, Lorena I.; Warne, Larry K.; Johnson, William Arthur.; Higgins, Matthew B.; Lehr, J.M.

Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry

More Details

Approximations to wire grid inductance

Proposed for publication in the Journal of Electrostatics.

Warne, Larry K.; Merewether, Kimball O.; Johnson, William Arthur.

By using a multipole-conformal mapping expansion for the wire currents we examine the accuracy of approximations for the transfer inductance of a one dimensional array of wires (wire grid). A simple uniform fit is constructed by introduction of the decay factor from bipolar coordinates into existing formulas for this inductance.

More Details

Assembly of LIGA using Electric Fields

Feddema, John T.; Warne, Larry K.; Johnson, William Arthur.; Routson, Allison J.; Armour, David L.

The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LIGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LIGA parts. The eventual use of this tool will be to assemble metal and non-metal LIGA parts into small electromechanical systems.

More Details

Statistical Properties of Antenna Impedance in an Electrically Large Cavity

IEEE Transactions on Antennas and Propagation

Warne, Larry K.; Hudson, Howard G.; Johnson, William Arthur.; Jorgenson, Roy E.; Stronach, Stephen L.

This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

More Details

Electromagnetic interactions GEneRalized (EIGER): Algorithm abstraction and HPC implementation

29th AIAA, Plasmadynamics and Lasers Conference

Johnson, William Arthur.

Modern software development methods combined with key generalizations of standard computational algorithms enable the development of a new class of electromagnetic modeling tools. This paper describes current and anticipated capabilities of a frequency domain modeling code, EIGER, which has an extremely wide range of applicability. In addition, software implementation methods and high performance computing issues are discussed.

More Details

EIGER: A new generation of computational electromagnetics tools

Johnson, William Arthur.

The EIGER project (Electromagnetic Interactions GenERalized) endeavors to bring the next generation of spectral domain electromagnetic analysis tools to maturity and to cast them in a general form which is amenable to a variety of applications. The tools are written in Fortran 90 and with an object oriented philosophy to yield a package that is easily ported to a variety of platforms, simply maintained, and above all efficiently modified to address wide ranging applications. The modular development style and the choice of Fortran 90 is also driven by the desire to run efficiently on existing high performance computer platforms and to remain flexible for new architectures that are anticipated. The electromagnetic tool box consists of extremely accurate physics models for 2D and 3D electromagnetic scattering, radiation, and penetration problems. The models include surface and volume formulations for conductors and complex materials. In addition, realistic excitations and symmetries are incorporated, as well as, complex environments through the use of Green`s functions.

More Details

Theory, simulation, and experiment of a single module coax-to-parallel-plate transition for the transformer section of PBFA II

Johnson, William Arthur.

Techniques are being developed to gain understanding of energy transport efficiencies through changes in pulsed power transmission line geometries. These techniques are being applied to design study of the PBFA-II accelerator which has the goal of increasing the energy available for ICF experiments. Transverse electromagnetic (TEM) wave analysis yields a simple circuit model of the new coax-to- parallel-plate transition. This simple model gives insight into the dominant physics of the device and suggests design improvements that will lead to the desired energy efficiencies. Insights gained by this simple model are confirmed and refined by 3-dimensional, time dependent computer simulations with the SOS code and scale model experiments. Simulations have predicted experimental results to high degree of accuracy which adds confidence in both the simulations and the scale model experiments. 1 ref., 11 figs., 1 tab.

More Details
Results 51–74 of 74
Results 51–74 of 74