Publications

5 Results

Search results

Jump to search filters

Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating

Rambo, Patrick K.; Schwarz, Jens S.; Smith, Ian C.; Ashley, Carol S.; Branson, Eric D.; Dunphy, Darren R.; Cook, Adam W.; Reed, Scott T.; Johnson, William Arthur.

In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

More Details

Distributed Sensor Particles for Remote Fluorescence Detection of Trace Analytes: UXO/CW

Singh, Anup K.; Schmitt, Randal L.; Johnson, Mark S.; Hargis, Philip J.; Simonson, Robert J.; Simonson, Robert J.; Schoeniger, Joseph S.; Ashley, Carol S.; Brinker, C.J.; Hance, Bradley G.

This report summarizes the development of sensor particles for remote detection of trace chemical analytes over broad areas, e.g residual trinitrotoluene from buried landmines or other unexploded ordnance (UXO). We also describe the potential of the sensor particle approach for the detection of chemical warfare (CW) agents. The primary goal of this work has been the development of sensor particles that incorporate sample preconcentration, analyte molecular recognition, chemical signal amplification, and fluorescence signal transduction within a ''grain of sand''. Two approaches for particle-based chemical-to-fluorescence signal transduction are described: (1) enzyme-amplified immunoassays using biocompatible inorganic encapsulants, and (2) oxidative quenching of a unique fluorescent polymer by TNT.

More Details

Sol-gel preservation of mankind`s cultural heritage in objects constructed of stone

Ashley, Carol S.

Monuments, buildings, and works of art constructed of carbonate-based stone (calcite, e.g., limestone and marble) are subject to deterioration resulting from the effects of environmental exposure, granular disintegration, freeze/thaw cycles, and salt recrystallization. This damage can potentially be reversed by the use of mineral-specific chemical passivants and consolidants that prevent hydrolytic attack and mechanical weakening. The treatment strategy combined the use of calcite coupling molecules to passivate the surfaces against new weathering with alkoxysilane strengthening or consolidating layers to arrest physical deterioration. The authors report on the effectiveness of passivating agents designed through a combined approach of modeling their adhesive and passivating properties using computations at the molecular scale and testing those properties using simulated leaching tests, microscopic evaluation, and characterization of mechanical strength. The experimental results indicate that there may be a threshold binding energy for the passivant above which the dissolution rate of calcite is actually enhanced. Passivant/consolidant treatments were identified which showed substantial reductions in the leach rate of calcite exposed to simulated acid rain conditions.

More Details
5 Results
5 Results