Publications

Results 26–50 of 91

Search results

Jump to search filters

Control of Structural Hydrophobicity and Cation Solvation on Interlayer Water Transport during Clay Dehydration

Nano Letters

Ho, Tuan A.; Coker, Eric N.; Jove Colon, Carlos F.; Wang, Yifeng

Swelling clay hydration/dehydration is important to many environmental and industrial processes. Experimental studies usually probe equilibrium hydration states in an averaged manner and thus cannot capture the fast water transport and structural change in interlayers during hydration/dehydration. Using molecular simulations and thermogravimetric analyses, we observe a two-stage dehydration process. The first stage is controlled by evaporation at the edges: water molecules near hydrophobic sites and the first few water molecules of the hydration shell of cations move fast to particle edges for evaporation. The second stage is controlled by slow desorption of the last 1-2 water molecules from the cations and slow transport through the interlayers. The two-stage dehydration is strongly coupled with interlayer collapse and the coordination number changes of cations, all of which depend on layer charge distribution. This mechanistic interpretation of clay dehydration can be key to the coupled chemomechanical behavior in natural/engineered barriers.

More Details

Molecular-level understanding of gibbsite particle aggregation in water

Journal of Colloid and Interface Science

Ho, Tuan A.; Criscenti, Louise C.

Using molecular dynamics simulations, we investigate the molecular scale origin of crystal face selectivity when one gibbsite particle attaches to another in water. A comparison of the free energy per unit surface area of particle–particle attachment indicates that particle attachment through edge surfaces, where the edge surfaces are either (1 0 0) or (1 1 0) crystal faces, is more energetically favorable compared to attachment between two basal surfaces (i.e., (0 0 1) crystal faces) or between the basal surface of one particle and the edge surface of another. This result suggests that gibbsite crystals with low basal/edge surface area ratio will preferentially attach through edge surfaces, potentially helping the crystals grow laterally. However, for larger gibbsite particles (high basal/edge surface area ratio) the total free energy, not normalized by surface area, of particle attachment through the basal surfaces is lower (more negative) than attachment through the edge surfaces, indicating that larger gibbsite particles will preferentially aggregate through basal surface attachments. The short-range electrostatic interactions including the interparticle hydrogen bonds from surface –OH groups drive particle attachment, and the dominant contribution to the free energy minimum is enthalpic rather than entropic. However, the enthalpy of basal-edge attachment is significantly offset by the entropy leading to a higher free energy (less negative) compared to that of basal-basal attachment. Study of the free energy for a few imperfect attachments of two particles indicates a higher free energy (i.e., less negative, less stable), compared to a perfect attachment

More Details

Molecular Origin of Wettability Alteration of Subsurface Porous Media upon Gas Pressure Variations

ACS Applied Materials and Interfaces

Ho, Tuan A.; Wang, Yifeng

Upon extraction/injection of a large quantity of gas from/into a subsurface system in shale gas production or carbon sequestration, the gas pressure varies remarkably, which may significantly change the wettability of porous media involved. Mechanistic understanding of such changes is critical for designing and optimizing a related subsurface engineering process. Using molecular dynamics simulations, we have calculated the contact angle of a water droplet on various solid surfaces (kerogen, pyrophyllite, calcite, gibbsite, and montmorillonite) as a function of CO2 or CH4 gas pressure up to 200 atm at a temperature of 300 K. The calculation reveals a complex behavior of surface wettability alteration by gas pressure variation depending on surface chemistry and structure, and molecular interactions of fluid molecules with surfaces. As the CO2 gas pressure increases, a partially hydrophilic kerogen surface becomes highly hydrophobic, while a calcite surface becomes more hydrophilic. Considering kerogen and calcite being the major components of a shale formation, we postulate that the wettability alteration of a solid surface induced by a gas pressure change may play an important role in fluid flows in shale gas production and geological carbon sequestration.

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny; Guglielmi, Yves; Sasaki, Tsubasa; Deng, Hang; Li, Pei; Steefel, Carl I.; Tournassat, Christophe; Xu, Hao; Babhulgaonkar, Shaswat; Birkholzer, Jens; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Wainwright, Haruko

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

Fast Advective Water Flow through Nanochannels in Clay Interlayers: Implications for Moisture Transport in Soils and Unconventional Oil/Gas Production

ACS Applied Nano Materials

Ho, Tuan A.; Wang, Yifeng; Jove Colon, Carlos F.; Coker, Eric N.

Water flow in nanometer or sub-nanometer hydrophilic channels bears special importance in diverse fields of science and engineering. However, the nature of such water flow remains elusive. Here, we report our molecular-modeling results on water flow in a sub-nanometer clay interlayer between two montmorillonite layers. We show that a fast advective flow can be induced by evaporation at one end of the interlayer channel, that is, a large suction pressure created by evaporation (∼818 MPa) is able to drive the fast water flow through the channel (∼0.88 m/s for a 46 Å-long channel). Scaled up for the pressure gradient to a 2 μm particle, the velocity of water is estimated to be about 95 μm/s, indicating that water can quickly flow through a μm-sized clay particle within seconds. The prediction seems to be confirmed by our thermogravimetric analysis of bentonite hydration and dehydration processes, which indicates that water transport at the early stage of the dehydration is a fast advective process, followed by a slow diffusion process. The possible occurrence of a fast advective water flow in clay interlayers prompts us to reassess water transport in a broad set of natural and engineered systems such as clay swelling/shrinking, moisture transport in soils, water uptake by plants, water imbibition/release in unconventional hydrocarbon reservoirs, and cap rock integrity of supercritical CO2 storage.

More Details

Water transport pathway in clay interlayer upon dehydration [Slides]

Ho, Tuan A.; Jove Colon, Carlos F.; Coker, Eric N.

Smectite (e.g., Montmorillonite): phyllosilicate minerals found in bentonites. Bentonites have been considered as key backfill barrier materials in deep geological nuclear waste repository concepts. Swelling/shrinking of montmorillonite (MMT) occurs with increasing/decreasing relative humidity. Microscopically, how does the hydration/dehydration process occur?

More Details

Water transport pathway in clay interlayer upon dehydration [Slides]

Ho, Tuan A.; Jove Colon, Carlos F.; Coker, Eric N.

Smectite (e.g., Montmorillonite): phyllosilicate minerals found in bentonites. Bentonites have been considered as key backfill barrier materials in deep geological nuclear waste repository concepts. Swelling/shrinking of montmorillonite (MMT) occurs with increasing/decreasing relative humidity. Our research question is, "Microscopically, how does the hydration/dehydration process occur?"

More Details

Pore size effect on selective gas transport in shale nanopores

Journal of Natural Gas Science and Engineering

Ho, Tuan A.; Wang, Yifeng

In shale gas production, gas composition may vary over time. To understand this phenomenon, we use molecular dynamics simulations to study the permeation of CH4, C2H6 and their mixture from a source container through a pyrophyllite nanopore driven by a pressure gradient. For a pure gas, the flow rate of CH4 is always higher than that of C2H6, regardless of pore size. For a 1:1 C2H6: CH4 mixture, however, C2H6:CH4 flow rate ratio is higher than the compositional ratio in the container (i.e., 1:1) when the pore size is smaller than ~1.8 nm. The selective transport is caused by the competitive adsorption of C2H6 over CH4 in the nanopore. The selectivity is also determined by the interplay between the surface diffusion of the adsorbed molecules and the viscous flow in the center of the pore, and it diminishes as the viscous flow becomes to dominate the surface diffusion when the pore size becomes larger than 1.8 nm. Our work shows that compositional differentiation of shale gas in production is a consequence of nanopore confinement and therefore a key characteristic of an unconventional reservoir. The related compositional information can potentially be used for monitoring the status of a production well such as its recovery rate.

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Weck, Philippe F.; Hadgu, Teklu H.; Kalinina, Elena A.; Lopez, Carlos M.; Sanchez, Amanda C.; Moffat, Harry K.; Rodriguez, Mark A.; Rutqvist, Jonny; Xu, Hao; Tian, Yuan; Deng, Hang; Li, Pei; Hu, Mengsu; Zarzycki, Piotr; Nico, Peter; Borglin, Sharon; Fox, Patricia; Sasaki, Tsubasa; Birkholzer, Jens; Caporuscio, Florie A.; Sauer, Kirsten B.; Rock, Marlena J.; Jerden, James; Thomas, Sara; Lee, Eric S.; Gattu, Vineeth K.; Ebert, William; Zavarin, Mavrik; Wolery, Thomas J.; Deinhart, Amanda; Genetti, Victoria; Shipman, Sam

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heat-generating nuclear waste disposition in deep clay/shale/argillaceous rock. International collaboration activities such as heater tests and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests has as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum vs. discrete) to tackle issues related to flow and transport at various scales of the host-rock and EBS design concept. Consideration of direct disposal of large capacity dual-purpose canisters (DPCs) as part of the back-end SNF waste disposition strategy has generated interest in improving our understanding of the effects of elevated temperatures on the EBS design. This is particularly important for backfilled repository concepts where temperature plays a key role in the EBS behavior and long-term performance. This report describes multiple R&D efforts on disposal in argillaceous geologic media through development and application of coupled THMC process models, experimental studies on clay/metal/cement barrier and host-rock (argillite) material interactions, molecular dynamic (MD) simulations of water transport during (swelling) clay dehydration, first-principles studies of metaschoepite (UO2 corrosion product) stability, and advances in thermodynamic plus surface complexation database development. Drift-scale URL experiments provides key data for testing hydrological-chemical (HC) model involving strong couplings of fluid mixing and barrier material chemical interactions. The THM modeling focuses on heater test experiments in argillite rock and gas migration in bentonite as part of international collaboration activities at underground research laboratories (URLs). In addition, field testing at an URL involves in situ analysis of fault slip behavior and fault permeability. Pore-scale modeling of gas bubble migration is also being investigated within the gas migration modeling effort. Interaction experiments on bentonite samples from heater test under ambient and elevated temperatures permit the evaluation of ion exchange, phase stability, and mineral transformation changes that could impact clay swelling. Advances in the development, testing, and implementation of a spent nuclear fuel (SNF) degradation model coupled with canister corrosion focus on the effects of hydrogen gas generation and its integration with Geologic Disposal Safety Assessment (GDSA). GDSA integration activities includes evaluation of groundwater chemistries in shale formations.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Bentonite Barrier Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kruichak, Jessica N.; Mills, Melissa M.; Sanchez, Amanda C.; Hadgu, Teklu H.

This interim report is an update of the report Jove Colon et al. (2019; M4SF-19SN010301091) describing international collaboration activities pertaining to FEBEX-DP and DECOVALEX19 Task C projects. Although work on these two international repository science activities is no longer continuing by the international partners, investigations on the collected data and samples is still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are given in Jové Colón et al. (2018; 2019) but will repeated here for completeness. The 2019 status of work conducted at Sandia National Laboratories (SNL) on these two activities is summarized along with other international collaboration activities in Birkholzer et al. (2019).

More Details

Revealing Transition States during the Hydration of Clay Minerals

Journal of Physical Chemistry Letters

Ho, Tuan A.; Criscenti, Louise C.; Greathouse, Jeffery A.

A molecular-scale understanding of the transition between hydration states in clay minerals remains a challenging problem because of the very fast stepwise swelling process observed from X-ray diffraction (XRD) experiments. XRD profile modeling assumes the coexistence of multiple hydration states in a clay sample to fit the experimental XRD pattern obtained under humid conditions. While XRD profile modeling provides a macroscopic understanding of the heterogeneous hydration structure of clay minerals, a microscopic model of the transition between hydration states is still missing. Here, for the first time, we use molecular dynamics simulation to investigate the transition states between a dry interlayer, one-layer hydrate, and two-layer hydrate. We find that the hydrogen bonds that form across the interlayer at the clay particle edge make an important contribution to the energy barrier to interlayer hydration, especially for initial hydration.

More Details
Results 26–50 of 91
Results 26–50 of 91