The shock response of porous amorphous silica was investigated using classical molecular dynamics, over a range of porosity ranging from fully dense (2.21 g/cc) down to 0.14 g/cc. We observed an enhanced densification in the Hugoniot response at initial porosities above 50%, and the effect increased with increasing porosity. In the lowest initial densities, after an initial compression response, the systems expanded with increased pressure. These results show good agreement with experiments. We explored mechanisms leading to enhanced densification which appear to differ from mechanisms observed in similar studies in silicon.
The shock response of porous amorphous silica was investigated using classical molecular dynamics, over a range of porosity ranging from fully dense (2.21 g/cc) down to 0.14 g/cc. We observed an enhanced densification in the Hugoniot response at initial porosities above 50%, and the effect increased with increasing porosity. In the lowest initial densities, after an initial compression response, the systems expanded with increased pressure. These results show good agreement with experiments. We explored mechanisms leading to enhanced densification which appear to differ from mechanisms observed in similar studies in silicon.
The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ=2.5 to 20g/cm3. The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-Type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.
CTH is an Eulerian hydrocode developed by Sandia National Laboratories (SNL) to solve a wide range of shock wave propagation and material deformation problems. Adaptive mesh refinement is also used to improve efficiency for problems with a wide range of spatial scales. The code has a history of running on a variety of computing platforms ranging from desktops to massively parallel distributed-data systems. For the Trinity Phase 2 Open Science campaign, CTH was used to study mesoscale simulations of the hypervelocity penetration of granular SiC powders. The simulations were compared to experimental data. A scaling study of CTH up to 8192 KNL nodes was also performed, and several improvements were made to the code to improve the scalability.
A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtained for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. The limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.