In November 2016, the High-Energy Radiation Megavolt Electron Source (HERIVIES)-III gamma simulator was used in a series of physics experiments. As part of the environmental characterization, six Spherical Compton Diodes (SCDs) were fielded in order to measure the dose rate at various locations. This report documents the locations, calibration, compensation, and analysis of these sensors. Several short studies are conducted of the SCD signals examining their change with respect to distance, comparison to other sensors and historical data, evaluation of the log-derivative, and signal behavior with a partially obscured converter. Recommendations for future work includes study and extension of SCD bandwidth, characterization of the HERMES-III output spectrum variability, and study of sensor signals with the courtyard shielded from the top of the Magnetically Insulated Transmission Line (MITL).
A series of outdoor shots were conducted at the HERMES III facility in November 2016. There were several goals associated with these experiments, one of which is an improved understanding of the courtyard radiation environment. Previous work had developed parametric fits to the spatial and temporal dose rate in the area of interest. This work explores the inter-shot variation of the dose in the courtyard, updated fit parameters, and an improved dose rate model which better captures high frequency content. The parametric fit for the spatial profile is found to be adequate in the far-field, however near-field radiation dose is still not well-understood.
A suite of coupled computational models for simulating the radiation, plasma, and electromagnetic (EM) environment in the High-Energy Radiation Megavolt Electron Source (HERMES) courtyard has been developed. In principle, this provides a predictive forward-simulation capability based solely on measured upstream anode and cathode current waveforms in the Magnetically Insulated Transmission Line (MITL). First, 2D R-Z ElectroMagnetic Particle-in-Cell (EM-PIC) simulations model the MITL and diode to compute a history of all electrons incident on the converter. Next, radiation transport simulations use these electrons as a source to compute the time-dependent dose rate and volumetric electron production in the courtyard. Finally, the radiation transport output is used as sources for EM-PIC simulations of the courtyard to com- pute electromagnetic responses. This suite has been applied to the November 2016 trials, shots 10268-10313. Modeling and experiment differ in significant ways. This is just the first iteration of a long process to improve the agreement, as outlined in the summary.
During the trials during November 2016 at the HERMES III facility, a number of sensors were fielded to measure the free fields and currents coupled to aerial and buried cables. Here, we report on the work done to compensate, correct, and analyze these signals. Average results are presented for selected sets of sensors and preliminary analyses are provided of the time and frequency domain signals. Electric fields were typically on the order of 10 kV/m, magnetic fields were approximately 10 AT, and currents were around 10 A. Several opportunities for improvement are identified including quantification of radiation effects on sensors, higher accuracy compensation techniques, increased sensitivity in differential sensor measurements, and exploration of the use of I-dots in conductivity calculations.
The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell’s equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.
EMPHASIS TM /NEVADA is the SIERRA/NEVADA toolkit implementation of portions of the EMP HASIS TM code suite. The purpose of the toolkit i m- plementation is to facilitate coupling to other physics drivers such as radi a- tion transport as well as to better manage code design, implementation, co m- plexity, and important verification and validation processes. This document describes the theory and implementation of the unstructured finite - element method solver , associated algorithms, and selected verification and valid a- tion . Acknowledgement The author would like to recognize all of the ALEGRA team members for their gracious and willing support through this initial Nevada toolkit - implementation process. Although much of the knowledge needed was gleaned from document a- tion and code context, they were always willing to consult personally on some of the less obvious issues and enhancements necessary.
The Unstructured Time - Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite - element techniques on unstructured meshes. This document provides user - specific information to facilitate the use of the code for ap plications of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring EMPHASIS/Nevada to the point it is today, including Bill Bohnhoff, Rich Drake, and all of the NEVADA code team.