Secondary Ion Emission Modeling in a Planar Bremsstrahlung Diode operated above 10MV
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
This work presents a new multiscale method for coupling the 3D Maxwell's equations to the 1D telegrapher's equations. While Maxwell's equations are appropriate for modeling complex electromagnetics in arbitrary-geometry domains, simulation cost for many applications (e.g. pulsed power) can be dramatically reduced by representing less complex transmission line regions of the domain with a 1D model. By assuming a transverse electromagnetic (TEM) ansatz for the solution in a transmission line region, we reduce the Maxwell's equations to the telegrapher's equations. We propose a self-consistent finite element formulation of the fully coupled system that uses boundary integrals to couple between the 3D and 1D domains and supports arbitrary unstructured 3D meshes. Additionally, by using a Lagrange multiplier to enforce continuity at the coupling interface, we allow for an absorbing boundary condition to also be applied to non-TEM modes on this boundary. We demonstrate that this feature reduces non-physical reflection and ringing of non-TEM modes off of the coupling boundary. By employing implicit time integration, we ensure a stable coupling, and we introduce an efficient method for solving the resulting linear systems. We demonstrate the accuracy of the new method on two verification problems, a transient O-wave in a rectilinear prism and a steady-state problem in a coaxial geometry, and show the efficiency and weak scalability of our implementation on a cold test of the Z-machine MITL and post-hole convolute.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Modeling and simulation of the legacy HERMES III Magnetically Insulated Transmission Line (MITL) has been performed using EMPHASIS, an unstructured time-domain electromagnetic (UTDEM) particle-in-cell (PIC) simulation software. This design when used lost roughly half of its current before the pulse reached the load. The cause of the current loss in the MITL was found to be the vacuum impedance changes along the MITL. The MITL was then redesigned to maintain constant impedance and simulated in EMPHASIS once again. Following predicting simulation results, the new MITL was then built, installed, and tested, showing minimal current loss and good agreement with simulation and theoretical results, all of which are reported here. Additionally, an analysis of experimental voltage calculation techniques using cathode and anode currents is performed and compared to simulation results.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We report on the verification of elastic collisions in EMPIRE-PIC and EMPIRE-Fluid in support of the ATDM L2 V&V Milestone. The thermalization verification problem and the theory behind it is presented along with an analytic solution for the temperature of each species over time. The problem is run with both codes under multiple parameter regimes. The temperature over time is compared between the two codes and the theoretical results. A preliminary convergence analysis is performed on the results from EMPIRE-PIC and EMPIRE-Fluid showing the rate at which the codes converge to the analytic solution in time (EMPIRE-Fluid) and particles (EMPIRE-PIC).
Abstract not provided.
EMPHASIS™/NEVADA is the SIERRA/NEVADA toolkit implementation of portions of the EMPHASIS TM code suite. The purpose of the toolkit implementation is to facilitate coupling to other physics drivers such as radiation transport as well as to better manage code design, implementation, complexity, and important verification and validation processes. This document describes the theory and implementation of the unstructured finite- element method solver, associated algorithms, and selected verification and validation.
Abstract not provided.
The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In November 2016, the High-Energy Radiation Megavolt Electron Source (HERIVIES)-III gamma simulator was used in a series of physics experiments. As part of the environmental characterization, six Spherical Compton Diodes (SCDs) were fielded in order to measure the dose rate at various locations. This report documents the locations, calibration, compensation, and analysis of these sensors. Several short studies are conducted of the SCD signals examining their change with respect to distance, comparison to other sensors and historical data, evaluation of the log-derivative, and signal behavior with a partially obscured converter. Recommendations for future work includes study and extension of SCD bandwidth, characterization of the HERMES-III output spectrum variability, and study of sensor signals with the courtyard shielded from the top of the Magnetically Insulated Transmission Line (MITL).
A series of outdoor shots were conducted at the HERMES III facility in November 2016. There were several goals associated with these experiments, one of which is an improved understanding of the courtyard radiation environment. Previous work had developed parametric fits to the spatial and temporal dose rate in the area of interest. This work explores the inter-shot variation of the dose in the courtyard, updated fit parameters, and an improved dose rate model which better captures high frequency content. The parametric fit for the spatial profile is found to be adequate in the far-field, however near-field radiation dose is still not well-understood.
Abstract not provided.
A suite of coupled computational models for simulating the radiation, plasma, and electromagnetic (EM) environment in the High-Energy Radiation Megavolt Electron Source (HERMES) courtyard has been developed. In principle, this provides a predictive forward-simulation capability based solely on measured upstream anode and cathode current waveforms in the Magnetically Insulated Transmission Line (MITL). First, 2D R-Z ElectroMagnetic Particle-in-Cell (EM-PIC) simulations model the MITL and diode to compute a history of all electrons incident on the converter. Next, radiation transport simulations use these electrons as a source to compute the time-dependent dose rate and volumetric electron production in the courtyard. Finally, the radiation transport output is used as sources for EM-PIC simulations of the courtyard to com- pute electromagnetic responses. This suite has been applied to the November 2016 trials, shots 10268-10313. Modeling and experiment differ in significant ways. This is just the first iteration of a long process to improve the agreement, as outlined in the summary.
During the trials during November 2016 at the HERMES III facility, a number of sensors were fielded to measure the free fields and currents coupled to aerial and buried cables. Here, we report on the work done to compensate, correct, and analyze these signals. Average results are presented for selected sets of sensors and preliminary analyses are provided of the time and frequency domain signals. Electric fields were typically on the order of 10 kV/m, magnetic fields were approximately 10 AT, and currents were around 10 A. Several opportunities for improvement are identified including quantification of radiation effects on sensors, higher accuracy compensation techniques, increased sensitivity in differential sensor measurements, and exploration of the use of I-dots in conductivity calculations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell’s equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
EMPHASIS TM /NEVADA is the SIERRA/NEVADA toolkit implementation of portions of the EMP HASIS TM code suite. The purpose of the toolkit i m- plementation is to facilitate coupling to other physics drivers such as radi a- tion transport as well as to better manage code design, implementation, co m- plexity, and important verification and validation processes. This document describes the theory and implementation of the unstructured finite - element method solver , associated algorithms, and selected verification and valid a- tion . Acknowledgement The author would like to recognize all of the ALEGRA team members for their gracious and willing support through this initial Nevada toolkit - implementation process. Although much of the knowledge needed was gleaned from document a- tion and code context, they were always willing to consult personally on some of the less obvious issues and enhancements necessary.
The Unstructured Time - Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite - element techniques on unstructured meshes. This document provides user - specific information to facilitate the use of the code for ap plications of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring EMPHASIS/Nevada to the point it is today, including Bill Bohnhoff, Rich Drake, and all of the NEVADA code team.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Special Topics Accelerators and Beams.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Digest of Technical Papers-IEEE International Pulsed Power Conference
The electrons flowing in a coaxial magnetically insulated transmission line (MITL), if allowed to flow uncontrolled into a radiographic electron diode load, can have an adverse impact on the performance of the system. Total radiation dose, impedance lifetime, and spot quality (size, shape, position, and stability) can all be affected. Current approaches to deal with this problem require a large volume in the vicinity of the electron diode load. For applications where this volume is not available, an alternate method of controlling the feed electrons is needed. In this paper, we will investigate various ideas for dealing with this issue and present results showing the properties of the various schemes investigated. © 2011 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Phys. Rev.--Special Topics Accelerators and Beams
Abstract not provided.
A new method for including electrode plasma effects in particle-in-cell simulation of high power devices is presented. It is not possible to resolve the plasma Debye length, {lambda}{sub D} {approx} 1 {mu}m, but using an explicit, second-order, energy-conserving particle pusher avoids numerical heating at large {delta}x/{lambda}{sub D} >> 1. Non-physical plasma oscillations are mitigated with Coulomb collisions and a damped particle pusher. A series of 1-D simulations show how plasma expansion varies with cell size. This reveals another important scale length, {lambda}{sub E} = T/(eE), where E is the normal electric field in the first vacuum cell in front of the plasma, and T is the plasma temperature. For {delta}x/{lambda}{sub E} < {approx}1, smooth, physical plasma expansion is observed. However, if {delta}x/{lambda}{sub E} >> 1, the plasma 'expands' in abrupt steps, driven by a numerical instability. For parameters of interest, {lambda}{sub E} << 100 {mu}m. It is not feasible to use cell sizes small enough to avoid this instability in large 3-D simulations.
Physical Review Special Topics in Accelerators and Beams
Abstract not provided.
Abstract not provided.
PPC2009 - 17th IEEE International Pulsed Power Conference
The use of stripline, rather than coaxial, load configurations for isentropic compression experiments (ICE) on Sandia's Z accelerator has recently become commonplace. Such loads offer many advantages over previously-developed coaxial loads, but also introduce new issues. In this paper, we will describe the behavior of these stripline loads and examine some of the issues that arise through their use. ©2009 IEEE.
Abstract not provided.
This report summarizes the work completed during FY2007 and FY2008 for the LDRD project ''Hybrid Plasma Modeling''. The goal of this project was to develop hybrid methods to model plasmas across the non-continuum-to-continuum collisionality spectrum. The primary methodology to span these regimes was to couple a kinetic method (e.g., Particle-In-Cell) in the non-continuum regions to a continuum PDE-based method (e.g., finite differences) in continuum regions. The interface between the two would be adjusted dynamically ased on statistical sampling of the kinetic results. Although originally a three-year project, it became clear during the second year (FY2008) that there were not sufficient resources to complete the project and it was terminated mid-year.
Phys. Rev. STAB
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.
Digest of Technical Papers-IEEE International Pulsed Power Conference
The ZR accelerator is a refurbishment of Sandia National Laboratories Z accelerator [1]. The ZR accelerator components were designed using electrostatic and circuit modeling tools. Transient electromagnetic modeling has played a complementary role in the analysis of ZR components [2]. In this paper we describe a 3D transient electromagnetic analysis of the ZR water convolute and stack using edge-based finite element techniques. © 2005 IEEE.
Digest of Technical Papers-IEEE International Pulsed Power Conference
The Z driver at Sandia National Laboratories delivers one to two megajoules of electromagnetic energy inside its ∼10 cm radius final feed in 100 ns. The high current (∼20 MA) at small diameter produces magnetic pressures well above yield strengths for metals. The metal conductors stay in place due to inertia long enough to deliver current to the load. Within milliseconds however, fragments of metal escape the load region at high velocity. Much of the hardware and diagnostics inside the vacuum chamber is protected from this debris by blast shields with small view ports, and fast-closing valves. The water-vacuum insulator requires different protection because the transmission line debris shield should not significantly raise the inductance or perturb the self-magnetically insulated electron flow. This report shows calculations and results from a design intended to protect the insulator assembly. © 2005 IEEE.
Computer Physics Communications
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds. © 2006 American Institute of Physics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas (special issue)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.