Commissioning of a 15kW Inductively Coupled Plasma (ICP) torch at Sandia National Labs
Abstract not provided.
Abstract not provided.
Optics Letters
Femtosecond laser electronic excitation tagging (FLEET) velocimetry is an important diagnostic technique for seedless velocimetry measurements particularly in supersonic and hypersonic flows. Typical FLEET measurements feature a single laser line and camera system to achieve one-component velocimetry along a line, although some multiple-spot and multiple-component configurations have been demonstrated. In this work, tomographic imaging is used to track the three-dimensional location of many FLEET spots. A quadscope is used to combine four unique views onto a single high-speed image intensifier and camera. Tomographic reconstructions of the FLEET emission are analyzed for three-component velocimetry from multiple FLEET spots. Glass wedges are used to create many (nine) closely spaced FLEET spots with less than 10% transmission losses. These developments lead to a significant improvement in the dimensionality and spatial coverage of a FLEET instrument with some increases in experimental complexity and data processing. Multiple-point three-component FLEET velocimetry is demonstrated in an underexpanded jet.
Abstract not provided.
Abstract not provided.
AIAA Journal
This work presents measurements of liquid drop deformation and breakup time behind approximately conical shock waves and evaluates the predictive capabilities of low-order models and correlations developed using planar shock experiments. A conical shock was approximated by firing a bullet at Mach 4.5 past a vertical column of water drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension were characterized using backlit stereo images taken at 500 kHz. The gas density and velocity fields experienced by the drops were estimated using a Reynolds-averaged Navier-Stokes simulation of the bullet. Classical correlations predict drop breakup times and deformation in error by a factor of 3 or more. The Taylor analogy breakup (TAB) model predicts deformed drop diameters that agree within the confidence bounds of the ensemble-averaged experimental values using a dimensionless constant C2 = 2 compared to the accepted value C2 = 2/3. Results demonstrate existing correlations are inadequate for predicting the drop response to the three-dimensional relaxation of the flowfield downstream of a conical-like shock and suggest the TAB model results represent a path toward improved predictions.
AIAA Journal
Fluid–structure interactions were measured between a representative control surface and the hypersonic flow deflected by it. The control surface is simplified as a spanwise finite ramp placed on a longitudinal slice of a cone. The front surface of the ramp contains a thin panel designed to respond to the unsteady fluid loading arising from the shock-wave/boundary-layer interactions. Experiments were conducted at Mach 5 and Mach 8 with ramps of different angles. High-speed schlieren captured the unsteady flow dynamics and accelerometers behind the thin panel measured its structural response. Panel vibrations were dominated by natural modes that were excited by the broadband aerodynamic fluctuations arising in the flowfield. However, increased structural response was observed in two distinct flow regimes: 1) attached or small separation interactions, where the transitional regime induced the strongest panel fluctuations. This was in agreement with the observation of increased convective undulations or bulges in the separation shock generated by the passage of turbulent spots, and 2) large separated interactions, where shear layer flapping in the laminar regime produced strong panel response at the flapping frequency. In addition, panel heating during the experiment caused a downward shift in its natural mode frequencies.
AIAA SciTech Forum and Exposition, 2023
Measurements of gas-phase temperature and pressure in hypersonic flows are important for understanding gas-phase fluctuations which can drive dynamic loading on model surfaces and to study fundamental compressible flow turbulence. To achieve this capability, femtosecond coherent anti-Stokes Raman scattering (fs CARS) is applied in Sandia National Laboratories’ cold-flow hypersonic wind tunnel facility. Measurements were performed for tunnel freestream temperatures of 42–58 K and pressures of 1.5–2.2 Torr. The CARS measurement volume was translated in the flow direction during a 30-second tunnel run using a single computer-controlled translation stage. After broadband femtosecond laser excitation, the rotational Raman coherence was probed twice, once at an early time where the collisional environment has not affected the Raman coherence, and another at a later time after the collisional environment has led to significant dephasing of the Raman coherent. The gas-phase temperature was obtained primarily from the early-probe CARS spectra, while the gas-phase pressure was obtained primarily from the late-probe CARS spectra. Challenges in implementing fs CARS in this facility such as changes in the nonresonant spectrum at different measurement location are discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIAA Journal
Previous efforts determined a set of calibrated, optimal model parameter values for Reynolds-averaged Navier–Stokes (RANS) simulations of a compressible jet in crossflow (JIC) using a $k–ε$ turbulence model. These parameters were derived by comparing simulation results to particle image velocimetry (PIV) data of a complementary JIC experiment under a limited set of flow conditions. Here, a $k–ε$ model using both nominal and calibrated parameters is validated against PIV data acquired from a much wider variety of JIC cases, including a realistic flight vehicle. The results from the simulations using the calibrated model parameters showed considerable improvements over those using the nominal values, even for cases that were not used in the calibration procedure that defined the optimal parameters. This improvement is demonstrated using a number of quality metrics that test the spatial alignment of the jet core, the magnitudes of multiple flow variables, and the location and strengths of vortices in the counter-rotating vortex cores on the PIV planes. These results suggest that the calibrated parameters have applicability well outside the specific flow case used in defining them and that with the right model parameters, RANS solutions for the JIC can be improved significantly over those obtained from the nominal model.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
This work presents an experimental investigation of the deformation and breakup of water drops behind conical shock waves. A conical shock is generated by firing a bullet at Mach 4.5 past a vertical column of drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension are characterized using backlit stereo videos taken at 500 kHz. A Reynolds-Averaged Navier Stokes (RANS) simulation of the bullet is used to estimate the gas density and velocity fields experienced by the drops. Classical correlations for breakup times derived from planar-shock/drop interactions are evaluated. Predicted drop breakup times are found to be in error by a factor of three or more, indicating that existing correlations are inadequate for predicting the response to the three-dimensional relaxation of the velocity and thermodynamic properties downstream of the conical shock. Next, the Taylor Analogy Breakup (TAB) model, which solves a transient equation for drop deformation, is evaluated. TAB predictions for drop diameter calculated using a dimensionless constant of C2 = 2, as compared to the accepted value of C2 = 2/3, are found to agree within the confidence bounds of the ensemble averaged experimental values for all drops studied. These results suggest the three-dimensional relaxation effects behind conical shock waves alter the drop response in comparison to a step change across a planar shock, and that future models describing the interaction between a drop and a non-planar shock wave should account for flow field variations.
Optics Letters
Femtosecond laser electronic excitation tagging (FLEET) is a powerful unseeded velocimetry technique typically used to measure one component of velocity along a line, or two or three components from a dot. In this Letter, we demonstrate a dotted-line FLEET technique which combines the dense profile capability of a line with the ability to perform two-component velocimetry with a single camera on a dot. Our set-up uses a single beam path to create multiple simultaneous spots, more than previously achieved in other FLEET spot configurations. We perform dotted-line FLEET measurements downstream of a highly turbulent, supersonic nitrogen free jet. Dotted-line FLEET is created by focusing light transmitted by a periodic mask with rectangular slits of 1.6 × 40 mm2 and an edge-to-edge spacing of 0.5 mm, then focusing the imaged light at the measurement region. Up to seven symmetric dots spaced approximately 0.9 mm apart, with mean full-width at half maximum diameters between 150 and 350 µm, are simultaneously imaged. Both streamwise and radial velocities are computed and presented in this Letter.
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022
Measurements of gas-phase pressure and temperature in hypersonic flows are important to understanding fluid–structure interactions on vehicle surfaces, and to develop compressible flow turbulence models. To achieve this measurement capability, femtosecond coherent anti-Stokes Raman scattering (fs CARS) is applied at Sandia National Laboratories’ hypersonic wind tunnel. After excitation of rotational Raman transitions by a broadband femtosecond laser pulse, two probe pulses are used: one at an early time where the collisional environment has largely not affected the Raman coherence, and another at a later time after the collisional environment has led to significant J-dependent dephasing of the Raman coherence. CARS spectra from the early probe are fit for temperature, while the later CARS spectra are fit for pressure. Challenges related to implementing fs CARS in cold-flow hypersonic facilities are discussed. Excessive fs pump energy can lead to flow perturbations. The output of a second-harmonic bandwidth compressor (SHBC) is spectrally filtered using a volume Bragg grating to provide the narrowband ps probe pulses and enable single-shot CARS measurements at 1 kHz. Measurements are demonstrated at temperatures and pressures relevant to cold-flow hypersonic wind tunnels in a low-pressure cryostat with an initial demonstration in the hypersonic wind tunnel.