Publications

3 Results

Search results

Jump to search filters

CO2-Enhanced Filtered Rayleigh Scattering for Study of a Hypersonic Cone-Slice-Ramp Geometry

AIAA SciTech Forum and Exposition, 2023

Saltzman, Ashley J.; Pandey, Anshuman; Beresh, Steven J.; Casper, Katya M.; Bhakta, Rajkumar; Denk, Brian P.; De Zetter, Marie E.; Spillers, Russell W.

This work applies Filtered Rayleigh Scattering (FRS) for the study of shock wave/boundary layer interactions on a cone-slice-ramp geometry. As FRS measures a planar slice of the flow, the three-dimensionality of this geometry can be captured, rather than in path-integrated imaging such as schlieren. A carbon dioxide seeding system designed for the Sandia Hypersonic Wind Tunnel provides sufficient light scattering for FRS measurements. Strong background rejection in the images was achieved using a molecular gas filter, resulting in detailed visualization of flow structures within the boundary and shear layers. Images show separation and reattachment shock, as well as structures related to flow instability and transition to turbulence. A highly unsteady separation region was investigated, showing instantaneous shaping of the shock structure with turbulence.

More Details

Relaminarization Effects on a Three-Dimensional Cone-Slice-Ramp Geometry at Mach 8

AIAA SciTech Forum and Exposition, 2023

Pandey, Anshuman; Saltzman, Ashley J.; Casper, Katya M.; Beresh, Steven J.; Bhakta, Rajkumar; Denk, Brian P.; De Zetter, Marie E.; Spillers, Russell W.

This study explores the evolution of a turbulent hypersonic boundary layer over a spanwise-finite expansion-compression geometry. The geometry is based on a slender cone with an axial slice that subjects the cone boundary layer to a favorable pressure gradient. The mean flow field was obtained from a hybrid RANS-LES computation that showed the thickening of the boundary layer, a decrease in the mean pressure and the development of incipient streamwise vortical structures on the slice. The experiments use fluctuating surface pressure and shear-stress sensors along the centerline of the slice which demonstrate significant reduction in turbulence activity on the slice indicating relaminarization of the boundary-layer. These observations were corroborated by high framerate schlieren, filtered Rayleigh scattering and scanning focused laser differential interferometry. When a 10◦ ramp is introduced at the aft end of the slice, the effectively relaminarized boundary-layer separates upstream of the slice-ramp corner due to its increased susceptibility to separation in comparison to a turbulent boundary layer.

More Details

Carbon Dioxide Seeding System for Enhanced Rayleigh Scattering in Sandia’s Hypersonic Wind Tunnel

AIAA AVIATION 2022 Forum

Saltzman, Ashley J.; Beresh, Steven J.; Casper, Katya M.; Denk, Brian P.; Bhakta, Rajkumar; De Zetter, Marie E.; Spillers, Russell W.

This work describes the development and testing of a carbon dioxide seeding system for the Sandia Hypersonic Wind Tunnel. The seeder injects liquid carbon dioxide into the tunnel, which evaporates in the nitrogen supply line and then condenses during the nozzle expansion into a fog of particles that scatter light via Rayleigh scattering. A planar laser scattering (PLS) experiment is conducted in the boundary layer and wake of a cone at Mach 8 to evaluate the success of the seeder. Second-mode waves and turbulence transition were well-visualized by the PLS in the boundary layer and wake. PLS in the wake also captured the expansion wave over the base and wake recompression shock. No carbon dioxide appears to survive and condense in the boundary layer or wake, meaning alternative seeding methods must be explored to extract measurements within these regions. The seeding system offers planar flow visualization opportunities and can enable quantitative velocimetry measurements in the future, including filtered Rayleigh scattering.

More Details
3 Results
3 Results