Process induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials' coefficients of thermal expansion as well as the cure shrinkage exhibited by polymer matrix materials. These residual stresses can have a profound effect on the measured performance of a loaded composite structure. A material property of particular interest when modeling the formation of damage in composite materials is the mode I fracture toughness. Currently, the standard method of measuring the mode I fracture toughness involves a double cantilever beam (DCB) experiment, where a pre-crack is introduced into a laminate and subsequently opened under tension. The resulting apparent fracture toughness from the DCB experiment may depend upon a coupled interaction between a material property, the mode I energy release rate, and the effect of residual stresses. Therefore, in this study, a series of DCB experiments are completed in conjunction with the solution of representative finite element models to quantify and understand the effect of process-induced residual stresses and temperature variations on the apparent fracture toughness. Specifically, double cantilever beam experiments are completed at three temperatures to characterize three types of specimens composed of carbon fiber/epoxy and glass fiber/epoxy materials: carbon bonded to carbon, glass bonded to glass, and carbon bonded to glass. The carbon-to-carbon and glass-to-glass specimens provide estimates of the composite's fracture toughness in the absence of significant residual stresses and the carbon-to-glass specimens indicate the effect of measurable process induced stresses. Upon completion of testing, the measured results and observations are used to develop high-fidelity finite element models simulating the residual stresses formed throughout the manufacturing process and the subsequent DCB testing of a laminate composed of the carbon/epoxy and glass/epoxy materials. The stress fields and delamination behavior predicted through simulation assist in understanding the trends observed during the DCB experiments and demonstrate the important relationship between experimental and computational efforts.
Simulations of low velocity impact with a flat cylindrical indenter upon a carbon fiber fabric reinforced polymer laminate are rigorously validated. Comparison of the impact energy absorption between the model and experiment is used as the validation metric. Additionally, non-destructive evaluation, including ultrasonic scans and three-dimensional computed tomography, provide qualitative validation of the models. The simulations include delamination, matrix cracks and fiber breaks. An orthotropic damage and failure constitutive model, capable of predicting progressive damage and failure, is developed in conjunction and described. An ensemble of simulations incorporating model parameter uncertainties is used to predict a response distribution which is then compared to experimental output using appropriate statistical methods. Finally, the model form errors are exposed and corrected for use in an additional blind validation analysis. The result is a quantifiable confidence in material characterization and model physics when simulating low velocity impact in structures of interest.
A series of quasi - static indentation experiments are conducted on carbon fiber reinforced polymer laminates with a systematic variation of thicknesses and fixture boundary conditions. Different deformation mechanisms and their resulting damage mechanisms are activated b y changing the thickn ess and boundary conditions. The quasi - static indentation experiments have been shown to achieve damage mechanisms similar to impact and penetration, however without strain rate effects. The low rate allows for the detailed analysis on the load response. Moreover, interrupted tests allow for the incremental analysis of various damage mechanisms and pr ogressions. The experimentally tested specimens are non - destructively evaluated (NDE) with optical imaging, ultrasonics and computed tomography. The load displacement responses and the NDE are then utilized in numerical simulations for the purpose of model validation and vetting. The accompanying numerical simulation work serves two purposes. First, the results further reveal the time sequence of events and the meaning behind load dro ps not clear from NDE . Second, the simulations demonstrate insufficiencies in the code and can then direct future efforts for development.
Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importance as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be defined through estimation. The objectives of this study deal with the computational examination of the four-point flexural characterization of a carbon fiber composite material. Utilizing a novel, orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior. Lastly, the results of the parameter study are combined with the orthotropic material model to estimate any relevant material properties that could not be determined through experimentation (e.g., in-plane compressive strength). Results indicate that a sensitivity analysis and parameter study can be used to optimize the material definition process. Furthermore, the discussed techniques are validated with experimental data provided for the flexural characterization of the described carbon fiber composite material.
This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.