Unleashing the Power of Voronoi Decompositions in low and high dimensions
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM Journal on Uncertainty Quantification
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACM International Conference Proceeding Series
Approximate counting [18] is useful for data stream and database summarization. It can help in many settings that allow only one pass over the data, want low memory usage, and can accept some relative error. Approximate counters use fewer bits; we focus on 8-bits but our results are general. These small counters represent a sparse sequence of larger numbers. Counters are incremented probabilistically based on the spacing between the numbers they represent. Our contributions are a customized distribution of counter values and efficient strategies for deciding when to increment them. At run-time, users may independently select the spacing (accuracy) of the approximate counter for small, medium, and large values. We allow the user to select the maximum number to count up to, and our algorithm will select the exponential base of the spacing. These provide additional flexibility over both classic and Csurös's [4] floating-point approximate counting. These provide additional structure, a useful schema for users, over Kruskal and Greenberg [13]. We describe two new and efficient strategies for incrementing approximate counters: use a deterministic countdown or sample from a geometric distribution. In Csurös's all increments are powers of two, so random bits rather than full random numbers can be used. We also provide the option to use powers-of-two but retain flexibility. We show when each strategy is fastest in our implementation. © 2011 ACM.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Computer Aided Geometric Design
Abstract not provided.
This LDRD 149045 final report describes work that Sandians Scott A. Mitchell, Randall Laviolette, Shawn Martin, Warren Davis, Cindy Philips and Danny Dunlavy performed in 2010. Prof. Afra Zomorodian provided insight. This was a small late-start LDRD. Several other ongoing efforts were leveraged, including the Networks Grand Challenge LDRD, and the Computational Topology CSRF project, and the some of the leveraged work is described here. We proposed a sentence mining technique that exploited both the distribution and the order of parts-of-speech (POS) in sentences in English language documents. The ultimate goal was to be able to discover 'call-to-action' framing documents hidden within a corpus of mostly expository documents, even if the documents were all on the same topic and used the same vocabulary. Using POS was novel. We also took a novel approach to analyzing POS. We used the hypothesis that English follows a dynamical system and the POS are trajectories from one state to another. We analyzed the sequences of POS using support vector machines and the cycles of POS using computational homology. We discovered that the POS were a very weak signal and did not support our hypothesis well. Our original goal appeared to be unobtainable with our original approach. We turned our attention to study an aspect of a more traditional approach to distinguishing documents. Latent Dirichlet Allocation (LDA) turns documents into bags-of-words then into mixture-model points. A distance function is used to cluster groups of points to discover relatedness between documents. We performed a geometric and algebraic analysis of the most popular distance functions and made some significant and surprising discoveries, described in a separate technical report.
Statistical Latent Dirichlet Analysis produces mixture model data that are geometrically equivalent to points lying on a regular simplex in moderate to high dimensions. Numerous other statistical models and techniques also produce data in this geometric category, even though the meaning of the axes and coordinate values differs significantly. A distance function is used to further analyze these points, for example to cluster them. Several different distance functions are popular amongst statisticians; which distance function is chosen is usually driven by the historical preference of the application domain, information-theoretic considerations, or by the desirability of the clustering results. Relatively little consideration is usually given to how distance functions geometrically transform data, or the distances algebraic properties. Here we take a look at these issues, in the hope of providing complementary insight and inspiring further geometric thought. Several popular distances, {chi}{sup 2}, Jensen - Shannon divergence, and the square of the Hellinger distance, are shown to be nearly equivalent; in terms of functional forms after transformations, factorizations, and series expansions; and in terms of the shape and proximity of constant-value contours. This is somewhat surprising given that their original functional forms look quite different. Cosine similarity is the square of the Euclidean distance, and a similar geometric relationship is shown with Hellinger and another cosine. We suggest a geodesic variation of Hellinger. The square-root projection that arises in Hellinger distance is briefly compared to standard normalization for Euclidean distance. We include detailed derivations of some ratio and difference bounds for illustrative purposes. We provide some constructions that nearly achieve the worst-case ratios, relevant for contours.
Technometrics
Abstract not provided.