Publications

Results 26–38 of 38

Search results

Jump to search filters

A Model for Atomic Precision p-Type Doping with Diborane on Si(100)-2×1

Journal of Physical Chemistry C

Campbell, Quinn C.; Ivie, Jeffrey A.; Bussmann, Ezra B.; Schmucker, Scott W.; Baczewski, Andrew D.; Misra, Shashank M.

Diborane (B2H6) is a promising molecular precursor for atomic precision p-type doping of silicon that has recently been experimentally demonstrated [ Škereň et al. Nat. Electron. 2020 ]. We use density functional theory (DFT) calculations to determine the reaction pathway for diborane dissociating into a species that will incorporate as electrically active substitutional boron after adsorbing onto the Si(100)-2×1 surface. Our calculations indicate that diborane must overcome an energy barrier to adsorb, explaining the experimentally observed low sticking coefficient (<1 × 10-4 at room temperature) and suggesting that heating can be used to increase the adsorption rate. Upon sticking, diborane has an ≈50% chance of splitting into two BH3 fragments versus merely losing hydrogen to form a dimer such as B2H4. As boron dimers are likely electrically inactive, whether this latter reaction occurs is shown to be predictive of the incorporation rate. The dissociation process proceeds with significant energy barriers, necessitating the use of high temperatures for incorporation. Using the barriers calculated from DFT, we parameterize a Kinetic Monte Carlo model that predicts the incorporation statistics of boron as a function of the initial depassivation geometry, dose, and anneal temperature. Our results suggest that the dimer nature of diborane inherently limits its doping density as an acceptor precursor and furthermore that heating the boron dimers to split before exposure to silicon can lead to poor selectivity on hydrogen and halogen resists. This suggests that, while diborane works as an atomic precision acceptor precursor, other non-dimerized acceptor precursors may lead to higher incorporation rates at lower temperatures.

More Details

Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques

Journal of Micro/Nanopatterning, Materials and Metrology

Katzenmeyer, Aaron M.; Dmitrovic, Sanja; Baczewski, Andrew D.; Campbell, Quinn C.; Bussmann, Ezra B.; Lu, Tzu-Ming L.; Anderson, Evan M.; Schmucker, Scott W.; Ivie, Jeffrey A.; Campbell, DeAnna M.; Ward, Daniel R.; Scrymgeour, David S.; Wang, George T.; Misra, Shashank M.

The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with subnanometer precision, typically for quantum physics experiments. This process, which we call atomic precision advanced manufacturing (APAM), dopes silicon beyond the solid-solubility limit and produces electrical and optical characteristics that may also be useful for microelectronic and plasmonic applications. However, scanned probe lithography lacks the throughput required to develop more sophisticated applications. Here, we demonstrate and characterize an APAM device workflow where scanned probe lithography of the atomic layer resist has been replaced by photolithography. An ultraviolet laser is shown to locally and controllably heat silicon above the temperature required for hydrogen depassivation on a nanosecond timescale, a process resistant to under- and overexposure. STM images indicate a narrow range of energy density where the surface is both depassivated and undamaged. Modeling that accounts for photothermal heating and the subsequent hydrogen desorption kinetics suggests that the silicon surface temperatures reached in our patterning process exceed those required for hydrogen removal in temperature-programmed desorption experiments. A phosphorus-doped van der Pauw structure made by sequentially photodepassivating a predefined area and then exposing it to phosphine is found to have a similar mobility and higher carrier density compared with devices patterned by STM. Lastly, it is also demonstrated that photodepassivation and precursor exposure steps may be performed concomitantly, a potential route to enabling APAM outside of ultrahigh vacuum.

More Details

Designing Catalysts for Dehydrogenation of Methane for Reducing Greenhouse Gas during Natural Gas Extraction

Campbell, Quinn C.

Catalytic conversion of methane (CH 4) into useful products is critical for maximizing the utility of natural gas output and for reducing green house gas release associated with flaring (burning off CH4 at natural gas extraction sites). One particular useful technique is methane dry reforming (DRM), which involves the chemical reaction of CH4 with carbon dioxide (CO2) to generate carbon monoxide (CO), hydrogen gas (H2), and subsequently other useful products. New and improved catalysts are required to facilitate efficient dry methane reforming. In this report, we apply the Density Functional Theory (DFT) computational technique to investigate a catalyst consisting of small nickel clusters (Ni n , n < 10) on ceria (Ce02 (111) surfaces) support. One main thrust of this project is to study the initial CH4 and CO2 reactions with the catalyst. We find that CH4 exhibits barrierless reactive adsorption on to the catalyst. In order words, this step is likely not the rate-determining step. A second thrust is to perform detailed studies of the catalyst itself and examine the role of oxygen vacancies. Using a specific DFT method and a hypothesis about the absence of the Ce(III) redox state, we obtain predictions about oxygen vacancies in good agreement with experimental observations.

More Details

A Quantum Analog Coprocessor for Correlated Electron Systems Simulation

Baczewski, Andrew D.; Brickson, Mitchell I.; Campbell, Quinn C.; Jacobson, Noah T.; Maurer, Leon

Analog quantum simulation is an approach for studying physical systems that might otherwise be computationally intractable to simulate on classical high-performance computing (HPC) systems. The key idea behind analog quantum simulation is the realization of a physical system with a low-energy effective Hamiltonian that is the same as the low-energy effective Hamiltonian of some target system to be studied. Purpose-built nanoelectronic devices are a natural candidate for implementing the analog quantum simulation of strongly correlated materials that are otherwise challenging to study using classical HPC systems. However, realizing devices that are sufficiently large to study the properties of a non-trivial material system (e.g., those described by a Fermi-Hubbard model) will eventually require the fabrication, control, and measurement of at least 0(10) quantum dots, or other engineered quantum impurities. As a step toward large-scale analog or digital quantum simulation platforms based on nanoelectronic devices, we propose a new approach to analog quantum simulation that makes use of the large Hilbert space dimension of the electronic baths that are used to adjust the occupancy of one or a few engineered quantum impurities. This approach to analog quantum simulation allows us to study a wide array of quantum impurity models. We can further augment the computational power of such an approach by combining it with a classical computer to facilitate dynamical mean-field theory (DMFT) calculations. DMFT replaces the solution of a lattice impurity problem with the solution of a family of localized impurity problems with bath couplings that are adjusted to satisfy a self-consistency condition between the two models. In DMFT, the computationally challenging task is the high-accuracy solution of an instance of a quantum impurity model that is determined self-consistently in coordination with a mean-field calculation. We propose using one or a few engineered quantum impurities with adjustable couplings to baths to realize an analog quantum coprocessor that effects the solution of such a model through measurements of a physical quantum impurity, operating in coordination with a classical computer to achieve a self-consistent solution to a DMFT calculation. We focus on implementation details relevant to a number of technologies for which Sandia has design, fabrication, and measurement expertise. The primary technical advances outlined in this report concern the development of a supporting modeling capability. As with all analog quantum simulation platforms, the successful design and operation of individual devices depends critically on one's ability to predict the effective low-energy Hamiltonian governing its dynamics Our project has made this possible and lays the foundation for future experimental implementations.

More Details

Designer quantum materials

Misra, Shashank M.; Ward, Daniel R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schmucker, Scott W.; Mounce, Andrew M.; Tracy, Lisa A.; Lu, Tzu-Ming L.; Marshall, Michael T.; Campbell, DeAnna M.

Quantum materials have long promised to revolutionize everything from energy transmission (high temperature superconductors) to both quantum and classical information systems (topological materials). However, their discovery and application has proceeded in an Edisonian fashion due to both an incomplete theoretical understanding and the difficulty of growing and purifying new materials. This project leverages Sandia's unique atomic precision advanced manufacturing (APAM) capability to design small-scale tunable arrays (designer materials) made of donors in silicon. Their low-energy electronic behavior can mimic quantum materials, and can be tuned by changing the fabrication parameters for the array, thereby enabling the discovery of materials systems which can't yet be synthesized. In this report, we detail three key advances we have made towards development of designer quantum materials. First are advances both in APAM technique and underlying mechanisms required to realize high-yielding donor arrays. Second is the first-ever observation of distinct phases in this material system, manifest in disordered 2D sheets of donors. Finally are advances in modeling the electronic structure of donor clusters and regular structures incorporating them, critical to understanding whether an array is expected to show interesting physics. Combined, these establish the baseline knowledge required to manifest the strongly-correlated phases of the Mott-Hubbard model in donor arrays, the first step to deploying APAM donor arrays as analogues of quantum materials.

More Details
Results 26–38 of 38
Results 26–38 of 38