Publications

Results 1–25 of 67

Search results

Jump to search filters

Lipid-coated mesoporous silica nanoparticles for anti-viral applications via delivery of CRISPR-Cas9 ribonucleoproteins

Scientific Reports

LaBauve, Annette E.; Saada, Edwin A.; Jones, Iris K.A.; Mosesso, Richard A.; Noureddine, Achraf; Techel, Jessica L.; Gomez, Andrew G.; Collette, Nicole; Sherman, Michael B.; Serda, Rita E.; Butler, Kimberly B.; Brinker, C.J.; Schoeniger, Joseph S.; Sasaki, Darryl; Negrete, Oscar N.

Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann–Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.

More Details

Immunocompromised Cas9 transgenic mice for rapid in vivo assessment of host factors involved in highly pathogenic virus infection

Molecular Therapy Methods and Clinical Development

Collette, Nicole; Dhungel, Pragyesh; Lund, Sean J.; Schwedler, Jennifer S.; Saada, Edwin A.; Sinha, Anupama S.; Light, Yooli K.; Schoeniger, Joseph S.; Negrete, Oscar N.

Targeting host factors for anti-viral development offers several potential advantages over traditional countermeasures that include broad-spectrum activity and prevention of resistance. Characterization of host factors in animal models provides strong evidence of their involvement in disease pathogenesis, but the feasibility of performing high-throughput in vivo analyses on lists of genes is problematic. To begin addressing the challenges of screening candidate host factors in vivo, we combined advances in CRISPR-Cas9 genome editing with an immunocompromised mouse model used to study highly pathogenic viruses. Transgenic mice harboring a constitutively expressed Cas9 allele (Cas9tg/tg) with or without knockout of type I interferon receptors served to optimize in vivo delivery of CRISPR single-guide RNA (sgRNA) using Invivofectamine 3.0, a simple and easy-to-use lipid nanoparticle reagent. Invivofectamine 3.0-mediated liver-specific editing to remove activity of the critical Ebola virus host factor Niemann-Pick disease type C1 in an average of 74% of liver cells protected immunocompromised Cas9tg/tg mice from lethal surrogate Ebola virus infection. We envision that immunocompromised Cas9tg/tg mice combined with straightforward sgRNA in vivo delivery will enable efficient host factor loss-of-function screening in the liver and other organs to rapidly study their effects on viral pathogenesis and help initiate development of broad-spectrum, host-directed therapies against emerging pathogens.

More Details

Viral Fate and Transport for COVID-19 - NVBL

Negrete, Oscar N.; Domino, Stefan P.; Ho, Clifford K.

The NVBL Viral Fate and Transport Team includes researchers from eleven DOE national laboratories and is utilizing unique experimental facilities combined with physics-based and data-driven modeling and simulation to study the transmission, transport, and fate of SARSCoV-2. The team was focused on understanding and ultimately predicting SARS-CoV-2 viability in varied environments with the goal of rapidly informing strategies that guide the nation’s resumption of normal activities. The primary goals of this project include prioritizing administrative and engineering controls that reduce the risk of SARS-CoV-2 transmission within an enclosed environment; identifying the chemical and physical properties that influence binding of SARS-CoV-2 to common surfaces; and understanding the contribution of environmental reservoirs and conditions on transmission and resurgence of SARS-CoV-2.

More Details

Photocatalytic Material Surfaces for SARS-CoV-2 Virus Inactivation

Negrete, Oscar N.; Bradfute, Steven; Larson, Steven R.; Sinha, Anupama S.; Coombes, Kenneth R.; Goeke, Ronald S.; Keenan, Lisa A.; Duay, Jonathon W.; Van Heukelom, Michael V.; Meserole, Stephen M.; Jacobs-Gedrim, Robin B.

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) can be spread through close contact or through fomite mediated transmission. This study details the fabrication and analysis of a photocatalyst surface which can rapidly inactivate SARS-COV-2 to limit spread of the virus by fomite mediated transmission. The surface being developed at Sandia for this purpose is a minimally hazardous Ag-Ti0 2 nanomaterial which is engineered to have high photocatalytic activity. Initial results at Sandia California in a BSL-2 safe surrogate virus- Vesicular Stomatitis Virus (VSV) show a significant difference between the photocatalyst material under exposure to visible light than controls. Additionally, UV-A light (365 nm) was found to eliminate SARS-COV-2 after 9 hours on all tested surfaces with irradiance of 15 mW/cm 2 equivalent to direct circumsolar irradiance.

More Details

Sandia's Research in Support of COVID-19 Pandemic Response: Materials Science

Rossman, Grant A.; Avina, Isaac C.; Steinfeldt, Bradley A.; Koplow, Jeffrey P.; Smith, Kent S.; Jouravel, Natalia J.; Buffleben, George M.; Sinha, Anupama S.; Negrete, Oscar N.; Barnett, T.; Karnesky, Richard A.; Melia, Michael A.; Taylor, Jason M.; Sorensen, Neil R.; Ackermann, Mark R.; Bachand, George D.; Harmon, Brooke N.; Jones, Brad H.; Miller, Philip R.; James, Anthony R.; Stefan, Maxwell S.; Burton, Patrick D.; Tezak, Matt; Corbin, William C.; Ricken, James B.; Atencio, Lauren; Cahill, Jesse L.; Martinez-Sanchez, Andres M.; Grillet, Anne M.; Dickens, Sara D.; Martin, Ahadi-Yusuf; Tucker, Mark; Hermina, Wahid L.; Laros, James H.

Sandia Materials Science Investment Area contributed to the SARS-CoV-2 virus and COVID-19 disease which represent the most significant pandemic threat in over 100 years. We completed a series of 7, short duration projects to provide innovative materials science research and development in analytical techniques to aid the neutralization of COVID-19 on multiple surfaces, approaches to rapidly decontaminate personal protective equipment, and pareto assessment of construction materials for manufacturing personal protective equipment. The developed capabilities and processes through this research can help US medical personnel, government installations and assets, first responders, state and local governments, and multiple federal agencies address the COVID-19 Pandemic.

More Details

Supercritical CO2 sterilization of N95 Masks

Koplow, Jeffrey P.; Smith, Kent S.; Jouravel, Natalia J.; Buffleben, George M.; Sinha, Anupama S.; Negrete, Oscar N.; Barnett, T.; Karnesky, Richard A.

A preliminary investigation of the use of supercritical carbon dioxide for treating of 3M 1860 N95 masks was undertaken to evaluate a potential route to low-cost, scalable, sterilization of personal protective equipment for multiple reuse in hospital settings. Upon entering the supercritical regime, the normally distinct liquid and gaseous phases of CO2 merge into a single homogeneous phase that has density, short-range order, and solvation capacity of a liquid, but the volume-filling and permeation properties that of a gas. This enables supercritical CO2 to function as a vehicle for delivery of biocidal agents such peracetic acid into microporous structures. The potentially adverse effect of a liquid-to-gas phase transition on mask filter media is avoided by conducting cleaning operations above 31 C, the critical temperature for carbon dioxide. A sample of fifteen 3M 1860 N95 masks was subjected to ten consecutive cycles of supercritical CO2 cleaning to determine its effect on mask performance. These 15 masks, along with 5 control samples then underwent a battery of standardized tests at the CDC NIOSH NPPTL research facility in Pittsburgh, PA. The data from these tests strongly suggest (but do not prove) that supercritical carbon dioxide do not damage 3M 1860 N95 masks. Additional tests conducted during this project confirmed the compatibility of supercritical CO2 with ventilator tubing that, like N95 masks, has been in short supply during portions of the COVID-19 pandemic and cannot be sterilized by conventional means. Finally, a control experiment was also conducted to examine the effect of supercritical CO2 on a BSL-2 surrogate virus, vesicular stomatitis virus (VSV), Indiana serotype strain. In the absence of biocidal additives, supercritical CO2 exhibited no measurable lethality against VSV. This surrogate virus experiment suggests that a biocidal additive such as peracetic acid will be necessary to achieve required sterilization metrics.

More Details

COVID-19 Infection Prevention through Natural Product Molecules

Corbin, William C.; Negrete, Oscar N.; Saada, Edwin A.

This project evaluates natural product molecules with the potential to prevent 2019- nCOV infection. The molecules theoretically work by blocking the ACE2 protein active site in human airways. Previous work focused on modeling candidate natural compounds, but this work examined baicalin, hesperetin, glycyrrhizin, and scutellarin in experimental in vitro studies, which included recombinant protein inhibition assays, cell culture virus inhibition assays, and cytotoxicity assays. The project delivered selectivity indices (ratio that measures the window between cytotoxicity and antiviral activity) of the four natural compounds that will help guide the direction of SARS-CoV-2 therapeutic development.

More Details

Lipid-Coated Mesoporous Silica Nanoparticles for the Delivery of the ML336 Antiviral to Inhibit Encephalitic Alphavirus Infection

Scientific Reports

LaBauve, Annette E.; Rinker, Torri E.; Noureddine, Achraf; Serda, Rita E.; Howe, Jane Y.; Sherman, Michael B.; Rasley, Amy; Brinker, C.J.; Sasaki, Darryl Y.; Negrete, Oscar N.

Venezuelan equine encephalitis virus (VEEV) poses a major public health risk due to its amenability for use as a bioterrorism agent and its severe health consequences in humans. ML336 is a recently developed chemical inhibitor of VEEV, shown to effectively reduce VEEV infection in vitro and in vivo. However, its limited solubility and stability could hinder its clinical translation. To overcome these limitations, lipid-coated mesoporous silica nanoparticles (LC-MSNs) were employed. The large surface area of the MSN core promotes hydrophobic drug loading while the liposome coating retains the drug and enables enhanced circulation time and biocompatibility, providing an ideal ML336 delivery platform. LC-MSNs loaded 20 ± 3.4 μg ML336/mg LC-MSN and released 6.6 ± 1.3 μg/mg ML336 over 24 hours. ML336-loaded LC-MSNs significantly inhibited VEEV in vitro in a dose-dependent manner as compared to unloaded LC-MSNs controls. Moreover, cell-based studies suggested that additional release of ML336 occurs after endocytosis. In vivo safety studies were conducted in mice, and LC-MSNs were not toxic when dosed at 0.11 g LC-MSNs/kg/day for four days. ML336-loaded LC-MSNs showed significant reduction of brain viral titer in VEEV infected mice compared to PBS controls. Overall, these results highlight the utility of LC-MSNs as drug delivery vehicles to treat VEEV.

More Details
Results 1–25 of 67
Results 1–25 of 67