Development of Novel Bound + Mobile Lubrication Strategies for Aerospace Applications
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the IEEE Journal of Microelectromechanical Systems.
Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.
Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts
This work investigated the relationship between the resistance degradation in low-force metal contacts and hot-switched operational conditions representative of MEMS devices. A modified nano-indentation apparatus was used to bring electrically-biased gold and platinum surfaces into contact at a load of 100 μN. The applied normal force and electrical contact resistance of the contact materials was measured simultaneously. The influence of parallel discharge paths for stored electrical energy in the contact circuit is discussed in relation to surface contamination decomposition and the observed resistance degradation.
Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.
Abstract not provided.
Abstract not provided.
Wear is a critical factor in determining the durability of microelectromechanical systems (MEMS). While the reliability of polysilicon MEMS has received extensive attention, the mechanisms responsible for this failure mode at the microscale have yet to be conclusively determined. We have used on-chip polycrystalline silicon side-wall friction MEMS specimens to study active mechanisms during sliding wear in ambient air. Worn parts were examined by analytical scanning and transmission electron microscopy, while local temperature changes were monitored using advanced infrared microscopy. Observations show that small amorphous debris particles ({approx}50-100 nm) are removed by fracture through the silicon grains ({approx}500 nm) and are oxidized during this process. Agglomeration of such debris particles into larger clusters also occurs. Some of these debris particles/clusters create plowing tracks on the beam surface. A nano-crystalline surface layer ({approx}20-200 nm), with higher oxygen content, forms during wear at and below regions of the worn surface; its formation is likely aided by high local stresses. No evidence of dislocation plasticity or of extreme local temperature increases was found, ruling out the possibility of high temperature-assisted wear mechanisms.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Materials Research
The synthesis and characterization of crystalline tungsten disulphide (WS2) solid lubricant thin films grown by atomic layer deposition (ALD) using WF6 and H2S gas precursors was studied. A new catalytic route was established to promote nucleation and growth of WS2 films on silicon surfaces with native oxide. Scanning electron microscopy with energy dispersive spectroscopy and Raman spectroscopy were used to determine the film morphology, composition, and crystallinity. The films exhibited solid lubricating behavior with a steady-state friction coefficient of 0.04 in a dry nitrogen environment.
Abstract not provided.
Abstract not provided.