Publications

Results 151–200 of 220

Search results

Jump to search filters

Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

Physical Review Special Topics - Accelerators and Beams

Stygar, William A.; Awe, Thomas J.; Bailey, James E.; Breden, Eric W.; Campbell, Edward M.; Cuneo, Michael E.; Fehl, David L.; Gomez, Matthew R.; Hutsel, Brian T.; Jennings, Christopher A.; Jones, Michael; Jones, Peter; Knapp, P.F.; Lash, Joel S.; Leckbee, Joshua; Lewis, Sean M.; Long, Finis W.; Lucero, Diego; Martin, Matthew R.; Matzen, M.K.; Mazarakis, Michael G.; Mcbride, Ryan; Mckee, G.R.; Moore, James M.; Mulville, Thomas D.; Peterson, K.J.; Porter, John L.; Reisman, David; Rochau, G.A.; Savage, Mark E.; Sceiford, M.E.; Schmit, Paul; Schwarz, Jens; Sefkow, Adam B.; Sinars, Daniel; Slutz, Stephen A.; Stoltzfus, Brian; Vesey, Roger A.; Wakeland, Peter E.; Wisher, Matthew L.; Woodworth, J.R.

We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

More Details

Laser Pre-Heat Studies for magLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

Mcbride, Ryan; Slutz, Stephen A.; Sinars, Daniel; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle; Schmit, Paul; Knapp, P.F.; Geissel, Matthias; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew R.; Awe, Thomas J.; Rovang, Dean C.; Lamppa, Derek C.; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, Michael E.

Abstract not provided.

Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator

Mcbride, Ryan; Bliss, David E.; Gomez, Matthew R.; Hansen, Stephanie B.; Martin, Matthew R.; Jennings, Christopher A.; Slutz, Stephen A.; Rovang, Dean C.; Knapp, P.F.; Schmit, Paul; Awe, Thomas J.; Hess, Mark H.; Lemke, Raymond W.; Foulk, James W.; Lamppa, Derek C.; Jobe, Marc R.L.; Fang, Lu; Hahn, Kelly; Chandler, Gordon A.; Cooper, Gary; Ruiz, Carlos L.; Robertson, G.K.; Cuneo, Michael E.; Sinars, Daniel; Tomlinson, Kurt; Smith, Gary; Paguio, Reny; Intrator, Tom; Weber, Thomas; Greenly, John

We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing and fabricating novel micro B-dot probes to measure B z ( t ) inside of an imploding liner. In one approach, the micro B-dot loops were fabricated on a printed circuit board (PCB). The PCB was then soldered to off-the-shelf 0.020- inch-diameter semi-rigid coaxial cables, which were terminated with standard SMA connectors. These probes were recently tested using the COBRA pulsed power generator (0-1 MA in 100 ns) at Cornell University. In another approach, we are planning to use new multi-material 3D printing capabilities to fabricate novel micro B-dot packages. In the near future, we plan to 3D print these probes and then test them on the COBRA generator. With successful operation demonstrated at 1-MA, we will then make plans to use these probes on a 20-MA Z experiment.

More Details

Fusion-Neutron Measurements for Magnetized Liner Inertial Fusion Experiments on the Z Accelerator

Hahn, Kelly; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Torres, Jose; Bur, James A.; Cuneo, Michael E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Jones, Brent M.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Reneker, Joseph; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Laser-Fuel Coupling Studies for MagLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Schmit, Paul; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

Mcbride, Ryan; Slutz, Stephen A.; Sinars, Daniel; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle; Rovang, Dean C.; Lamppa, Derek C.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schmit, Paul; Knapp, P.F.; Awe, Thomas J.; Jennings, Christopher A.; Martin, Matthew R.; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, Michael E.

Abstract not provided.

Experimental Progress in Magnetized Liner Inertial Fusion (MagLIF)

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Peterson, K.J.; Hansen, Stephanie B.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Recent progress in Magnetized Liner Inertial Fusion (MagLIF) experiments

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias; Harvey-Thompson, Adam J.; Peterson, K.J.; Awe, Thomas J.; Hansen, Stephanie B.; Harding, Eric H.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew R.; Mcbride, Ryan; Porter, John L.; Rochau, G.A.

Abstract not provided.

Magnetized Liner Inertial Fusion on the Z Pulsed-Power Accelerator

Mcbride, Ryan; Sinars, Daniel; Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Awe, Thomas J.; Peterson, K.J.; Knapp, P.F.; Schmit, Paul; Rovang, Dean C.; Geissel, Matthias; Vesey, Roger A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew R.; Lemke, Raymond W.; Hahn, Kelly; Harding, Eric H.; Cuneo, Michael E.; Porter, John L.; Rochau, G.A.; Stygar, William A.

Abstract not provided.

LEH Transmission and Early Fuel Heating for MagLIF with Z-Beamlet

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Schmit, Paul; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, J.W.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Effects of magnetization on fusion product trapping and secondary neutron spectra

Physics of Plasmas

Knapp, P.F.; Schmit, Paul; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly; Sinars, Daniel; Peterson, K.J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Geissel, Matthias; Harvey-Thompson, Adam J.; Porter, John L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

More Details

Diagnosing magnetized liner inertial fusion experiments on Z

Physics of Plasmas

Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Hahn, Kelly; Knapp, P.F.; Schmit, Paul; Awe, Thomas J.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Schroen, D.G.; Tomlinson, K.; Ryutov, D.

Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

More Details

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Ruiz, Carlos L.; Sinars, Daniel; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark C.; Hess, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger A.

In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Peterson, K.J.; Porter, John L.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Experimental verification of the Magnetized Liner Inertial Fusion (MagLIF) concept

ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Awe, T.J.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Jennings, C.A.; Knapp, P.F.; Lamppa, Derek C.; Martin, M.R.; Mcbride, Ryan; Peterson, K.J.; Porter, J.L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Schmit, Paul; Sinars, Daniel; Smith, Ian C.

Abstract not provided.

Adaptive Beam Smoothing with Plasma-Pinholes for Laser-Entrance-Hole Transmission Studies

Geissel, Matthias; Awe, Thomas J.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Kimmel, Mark; Lewis, Sean M.; Mcbride, Ryan; Peterson, K.J.; Schollmeier, Marius; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Stahoviak, John W.; Porter, John L.

Abstract not provided.

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Robertson, G.K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion Experiments on the Z Facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Modified 3D-helix-like instability structure for imploding Z-pinch liners that are premagnetized with a uniform axial field

Awe, Thomas J.; Jennings, Christopher A.; Mcbride, Ryan; Cuneo, Michael E.; Lamppa, Derek C.; Martin, Matthew R.; Rovang, Dean C.; Sinars, Daniel; Slutz, Stephen A.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Herrmann, Mark H.; Jones, Michael; Knapp, P.F.; Mckenney, John; Peterson, K.J.; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Schmit, Paul; Sefkow, Adam B.; Stygar, William A.; Vesey, Roger A.; Yu, Edmund; Tomlinson, Kurt; Schroen, Diana G.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion experiments on the Z facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, Michael E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew R.; Mcbride, Ryan; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Results Progress and Plans for Magnetized Liner Inertial Fusion (MagLIF) on Z

Peterson, K.J.; Slutz, Stephen A.; Sinars, Daniel; Sefkow, Adam B.; Gomez, Matthew R.; Awe, Thomas J.; Harvey-Thompson, Adam J.; Geissel, Matthias; Schmit, Paul; Smith, Ian C.; Mcbride, Ryan; Rovang, Dean C.; Knapp, P.F.; Hansen, Stephanie B.; Jennings, Christopher A.; Harding, Eric H.; Porter, John L.; Vesey, Roger A.; Blue, Brent E.; Schroen, Diana G.; Tomlinson, Kurt

Abstract not provided.

Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field

Physics of Plasmas

Awe, Thomas J.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Herrmann, Mark H.; Jones, Michael; Mckenney, John; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Stygar, William A.; Jennings, Christopher A.; Mcbride, Ryan; Lamppa, Derek C.; Martin, Matthew R.; Rovang, Dean C.; Sinars, Daniel; Slutz, Stephen A.; Cuneo, Michael E.

Abstract not provided.

Observations of Modified Three-Dimensional Instability Structure for Imploding z -Pinch Liners that are Premagnetized with an Axial Field

Physical Review Letters

Mcbride, Ryan; Gomez, Matthew R.; Hansen, Stephanie B.; Herrmann, Mark H.; Mckenney, John; Robertson, G.K.; Rochau, G.A.; Savage, Mark E.; Stygar, William A.; Jennings, Christopher A.; Lamppa, Derek C.; Martin, Matthew R.; Rovang, Dean C.; Slutz, Stephen A.; Cuneo, Michael E.; Owen, Albert C.; Sinars, Daniel

Novel experimental data are reported that reveal helical instability formation on imploding z -pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations.

More Details

Laser-ablated active doping technique for visible spectroscopy measurements on Z

Gomez, Matthew R.

Visible spectroscopy is a powerful diagnostic, allowing plasma parameters ranging from temperature and density to electric and magnetic fields to be measured. Spectroscopic dopants are commonly introduced to make these measurements. On Z, dopants are introduced passively (i.e. a salt deposited on a current-carrying surface); however, in some cases, passive doping can limit the times and locations at which measurements can be made. Active doping utilizes an auxiliary energy source to disperse the dopant independently from the rest of the experiment. The objective of this LDRD project was to explore laser ablation as a method of actively introducing spectroscopic dopants. Ideally, the laser energy would be delivered to the dopant via fiber optic, which would eliminate the need for time-intensive laser alignments in the Z chamber. Experiments conducted in a light lab to assess the feasibility of fibercoupled and open-beam laser-ablated doping are discussed.

More Details
Results 151–200 of 220
Results 151–200 of 220