Publications

Results 26–50 of 187

Search results

Jump to search filters

Numerical assessment of fault impact on caprock seals during CO2 sequestration

International Journal of Greenhouse Gas Control

Newell, Pania N.; Martinez, Mario J.

Coupled fluid-flow and geomechanical analysis of caprock integrity has gained a lot of attention among scientists and researchers investigating the long-term performance of geologic carbon storage systems. Reactivation of pre-existing fractures within the caprock or re-opening of faults can create permeable pathways which can influence the seal integrity. Stability of the caprock during and after injection of super-critical CO2, and the impact of pre-existing fractures in the presence or absence of one or multiple faults have been investigated in this study. The impact of the wellbore orientation and the injection rate are among other key factors in understanding the structural trapping mechanisms within such geological formations. In this study, we numerically investigated the impact of each of these factors. This study revealed the interplay between joints and faults and how different leakage pathways are formed and under which scenario they play a dominant role in terms of CO2 leakage. This study also highlights the role of one versus multiple faults in the domain and the importance of the fault hydrological property in forming leakage pathway.

More Details

Testing and simulations of spatial and temporal temperature variations in a particle-based thermal energy storage bin

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Sment, Jeremy N.; Martinez, Mario J.; Albrecht, Kevin J.; Ho, Clifford K.

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories is conducting research on a Generation 3 Particle Pilot Plant (G3P3) that uses falling sand-like particles as the heat transfer medium. The system will include a thermal energy storage (TES) bin with a capacity of 6 MWht¬ requiring ~120,000 kg of flowing particles. Testing and modeling were conducted to develop a validated modeling tool to understand temporal and spatial temperature distributions within the storage bin as it charges and discharges. Flow and energy transport in funnel-flow was modeled using volume averaged conservation equations coupled with level set interface tracking equations that prescribe the dynamic geometry of particle flow within the storage bin. A thin layer of particles on top of the particle bed was allowed to flow toward the center and into the flow channel above the outlet. Model results were validated using particle discharge temperatures taken from thermocouples mounted throughout a small steel bin. The model was then used to predict heat loss during charging, storing, and discharging operational modes at the G3P3 scale. Comparative results from the modeling and testing of the small bin indicate that the model captures many of the salient features of the transient particle outlet temperature over time.

More Details

Pore-Scale Analysis of Calcium Carbonate Precipitation and Dissolution Kinetics in a Microfluidic Device

Environmental Science and Technology

Yoon, Hongkyu Y.; Chojnicki, Kirsten C.; Martinez, Mario J.

In this work, we have characterized the calcium carbonate (CaCO3) precipitates over time caused by reaction-driven precipitation and dissolution in a micromodel. Reactive solutions were continuously injected through two separate inlets, resulting in transverse-mixing induced precipitation during the precipitation phase. Subsequently, a dissolution phase was conducted by injecting clean water (pH = 4). The evolution of precipitates was imaged in two and three dimensions (2-, 3-D) at selected times using optical and confocal microscopy. With estimated reactive surface area, effective precipitation and dissolution rates can be quantitatively compared to results in the previous works. Our comparison indicates that we can evaluate the spatial and temporal variations of effective reactive areas more mechanistically in the microfluidic system only with the knowledge of local hydrodynamics, polymorphs, and comprehensive image analysis. Our analysis clearly highlights the feedback mechanisms between reactions and hydrodynamics. Pore-scale modeling results during the dissolution phase were used to account for experimental observations of dissolved CaCO3 plumes with dissolution of the unstable phase of CaCO3. Mineral precipitation and dissolution induce complex dynamic pore structures, thereby impacting pore-scale fluid dynamics. Pore-scale analysis of the evolution of precipitates can reveal the significance of chemical and pore structural controls on reaction and fluid migration.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Seismicity rate surge on faults after shut-in: Poroelastic response to fluid injection

Bulletin of the Seismological Society of America

Chang, Kyung W.; Yoon, Hongkyu Y.; Martinez, Mario J.

Injection of large amounts of fluid into the subsurface alters the states of pore pressure and stress in the formation, potentially inducing earthquakes. Increase in the seismicity rate after shut-in is often observed at fluid-injection operation sites, but mechanistic study of the rate surge has not been investigated thoroughly. Considering full poroelastic coupling of pore pressure and stress, the earthquake occurrence after shut-in can be driven by two mechanisms: (1) post shut-in diffusion of pore pressure into distant faults and (2) poroelastic stressing caused by fluid injection. Interactions of these mechanisms can depend on fault geometry, hydraulic and mechanical properties of the formation, and injection operation. In this work, a 2D aerial view of the target reservoir intersected by strike-slip basement faults is used to evaluate the impact of injection-induced pressure buildup on seismicity rate surge. A series of sensitivity tests are performed by considering the variation in (1) permeability of the fault zone, (2) locations and the number of faults with respect to the injector, and (3) well operations with time-dependent injection rates. Lower permeability faults have higher seismicity rates than more permeable faults after shut-in due to delayed diffusion and poroelastic stressing. Hydraulic barriers, depending on their relative location to injection, can either stabilize or weaken a conductive fault via poroelastic stresses. Gradual reduction of the injection rate minimizes the coulomb stress change and the least seismicity rates are predicted due to slower relaxation of coupling-induced compression as well as pore-pressure dissipation.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, R.A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David M.; Cook, Adam W.; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua S.; Boyce, Brad B.; Johnson, Kyle J.; Rodgers, Theron R.; Ford, Kurtis R.; Martinez, Mario J.; Moser, Daniel M.; van Bloemen Waanders, Bart G.; Chandross, M.; Abdeljawad, Fadi F.; Allen, Kyle M.; Stender, Michael S.; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas A.; Brown-Shaklee, Harlan J.; Kustas, Andrew K.; Sugar, Joshua D.; Kammler, Daniel K.; Wilson, Mark A.

Abstract not provided.

Results 26–50 of 187
Results 26–50 of 187